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Resumen

En este trabajo se introduce un potencial Φ2 para describir la dinámica de nuestro candidato de campo
escalar para ser la materia oscura del Universo, y uno de los principales ingredientes necesarios para obtener
la estructura a gran escala que vemos hoy en dı́a. Aquı́ calculamos y simulamos algunos de estos ingredientes
necesarios para obtener de manera cualitativa, el perfil de densidad de materia a grandes escalas que
observamos. Comenzamos asumiendo que las semillas del universo temprano eran pequeñas fluctuaciones
que viván dentro de un fondo homogéneo de Friedmann-Lemaitre-Robertson-Walker (FLRW), las cuales se
estudian utilizando la Teorı́a Lineal de Perturbaciones, estas fluctuaciones crecieron debido a la inestabilidad
gravitacional, ası́ dando lugar a lo que hoy observamos: galaxias, clusters de galaxias, etc. En este trabajo
utilizamos la métrica perturbada más general para las fluctuaciones escalares, las cuales usamos para
obtener tanto las ecuaciones homogéneas de Einstein como las perturbadas. Al calcular la densidad de
energı́a utilizamos la conservación del tensor de energá-momento, el cual también se encuentra perturbado,
y que junto con las ecuaciones de Einstein y la ecuación perturbada de Klein-Gordon nos dan un conjunto
completo de ecuaciones a resolver.

Palabras Claves: Materia Oscura, Campos Escalares, Teorı́a de Perturbaciones, Estructura a Gran Escala.

Abstract

In this work we introduce a Φ2 potential to describe the dynamics of our scalar field (SF) candidate to
be the dark matter in the Universe, and as one of the main ingredients needed to obtain the large-scale
structure we see today. We calculate and simulate some of the ingredients needed to obtain the matter
density profile of the large-scale structure we observe now a days in a qualitative way. We begin assuming
that the seeds of the early universe were small fluctuations that lived inside an homogeneous Friedmann-
Lemaitre-Robertson-Walker (FLRW) background, and which are studied using the Linear Perturbation
Theory, these fluctuations then grew because of gravitational instability, this way giving birth to what we
see today: galaxies, clusters of galaxies, etc. We then work with the most general perturbed metric for
scalar perturbations, which we use to obtain the homogeneous and perturbed Einstein’s equations together
with the help of General Relativity. In calculating the energy density we used the conservation of the
energy-momentum tensor, which is now also perturbed, and that together with the Einstein’s equations
and the perturbed Klein-Gordon equation gave us our complete set of equations to be solved.
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1. Introduction

The cosmic microwave background radiation (CMB)
is one of the main proofs for the homogeneous and
isotropic model of the Big Bang. The anisotropies of
the CMB are related with small perturbations that are
found to be inside a perfectly smooth background, and
which are believed to be the seeds on the formation of
galaxies and large-scale structure of the Universe. We
then assume that in the past these small deviations exis-
ted in our homogeneous Universe. For this we propose
a cosmological model that includes a scalar field to be
the dark matter which can have these initial inhomoge-
nities, than will later evolve to form galactic structure.

Nowadays we know that the Universe is not perfectly
homogeneous and isotropic; there are galaxies and clus-
ters of galaxies; whose large-scale distribution is not
given randomly. It has been possible to observe that such
anisotropies on the temperature of the CMB predict the
existence of small deviations of the uniform density of
space, seen also at large-scales.

For cosmological models that involve scalar fields,
it is usually supposed that the scalar field has (spatial)
density fluctuations at cluster scales or below. This is
because in the linear perturbation theory, the mass of
the field is very small and because of this it does not
feel smaller or equal fluctuations to a tenth of a Mega-
parsec. Not taking into account the perturbations in the
mass of the scalar field dark matter results in a good
approximation when the perturbations are small. If we
take them into account, we have to be careful, because
then the local metric of FLRW would not be a good
approximation anymore. In this case, both linear and
non-linear perturbations might modify the evolution of
the dark matter perturbations, these affecting at the same
time the evolution of structure formation.

As the Universe evolves, matter is initially accumu-
lated in very dense regions not caring how small the
initial density could be; eventually enough matter will
be gathered into this region to create the structure.

The most accepted cosmological models for under-
standing the mechaof structure formation are those that
contain dark matter and dark energy, with a possibly
negative equation of state as the main constituyents of
the Universe, [1].

Both dark matter and dark energy can be described
by a dynamical scalar field that rolls in its potential
V (Φ), although there is not yet a general agreement on
the correct form that this scalar potential V (Φ) should
have, [2]-[4].

The fundamental questions in this kind of problem

are then: What do we mean with non-uniform? and how
could we quantify the distribution of the galaxies that
are now being observed? We begin then by understan-
ding the concept of uniformity which will directly lead
us to the answer of the second question. For this, ima-
gine that galaxies are distributed in some random way in
the Universe, and we want to understand if the mecha-
nism responsible of this distribution operates in a uni-
form way. Such process has to give the same probability
of having a galaxy in each position of space.

The aim is to reconstruct the observed Universe, assu-
ming that at some stage in the past the where small de-
viations in the homogeneity of space. It is believed that
cosmic structure could have had its origins due to these
deviations that where amplified by the gravitational
instability of small fluctuations of the early Universe.

While these homogeneities are kept small, their
growth can be studied with linear perturbation theory.
We should emphasis that upon assuming the existence
of these small inhomogeneities at some initial stage,
the cosmological model proposed should reproduce and
satisfy such initial conditions.

We will introduce a scalar field Φ as a candidate to be
the dark matter both at cosmological and galactic scales
in a flat Universe with 97% of the matter unknown but
of great importance at the cosmological level, where we
have to take into account the possibility that the struc-
tures could be made up of this kind of matter, i. e., dark
matter may contribute to the formation of structure.

The main objective of this work is to introduce a
scalar field dark matter model and assume that this dark
matter is a real scalar field which involves an auto-
interacting potential V (Φ) = 1

2m
2Φ2, where the mass

of the SF Φ is defined as mΦ = V̈Φ = 0 and the dark
matter is affected by radiation only indirectly, through
the gravitational potential.

Then, to treat these anisotropies we need to know how
the perturbations that act upon the dark matter evolve.
This will give us energy density needed to obtain the
right amount of mass in galaxies.

We develop the theory and the simulations needed to
obtain the right spectra, based on the facts mentioned be-
fore, and referring to the non-perturbed model (without
fluctuations) as the background, from where the small
fluctuations will be evolved.

2. Theory

The high degree of isotropy observed in the CMB,
together with the Copernican principle, give us the
grounds to believe that the large-scale structure in the
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observable Universe can be correctly described by the
FLRW model, which is isotropic and spatially homoge-
neous. Nowadays it is believed that the exact deviations
to the FLRW model are small enough that can be de-
scribed considering the linear perturbation theory. The
model of introducing perturbations to the FLRW met-
ric was introduced by Lifshitz (1946). In this theory we
distinguish between the space-time of a background,
FLRW standard model, and a perturbed space-time,
which represents the physical Universe. In this section
we present the fundamental equations that are needed
for the analysis of the perturbations of the scalar field in
a FLRW space-time, here we have taken c ≡ 1, with c
the speed of light. After introducing the perturbed met-
ric tensor in a FLRW background we mainly consider
scalar perturbations. We then give the equations for the
conservation of energy and momentum, and Einstein’s
field equations for a FLRW perturbed metric.

We consider first order perturbations over a FLRW
background, such that the metric tensor can be sepa-
rated as

gµν = g(0)
µν + δgµν ,

where the background metric g(0)
µν is given by

g(0)
µν = a2(−1, δij),

where δij is the 3-dimensional metric with constant cur-
vature. It is considered that the background is the non-
perturbed space-time, that is described by the FLRW
metric. The metric tensor has 10 independent compo-
nents in 4 dimensions. For linear perturbations it is be-
tter to separate the metric perturbations in different parts
called scalars, vectorial and tensorial depending in their
properties. The reason to separate the metric perturba-
tions is because they themselves decouple in the per-
turbed linear equations and so it is easier to distinguish
them.

The scalar perturbations can always be constructed
by a scalar quantity, its derivatives or any background
quantity as the metric δij . We can then have a perturbed
scalar metric to first order in terms of four scalars ψ
(lapse function), φ (gravitational potential), B (shift)
and E (anisotropic potential) , where

δg00 = −a(η)22ψ,

δg0i = δgi0 = a(η)2B,i

δgij = −2a(η)2(φδij − E,ij ).

(1)

with η the conformal time.
From this, we get the most general perturbed line ele-

ment

ds2 = a(η)2[−(1 + 2ψ)dη2 + 2B,i dηdx
i

+ [(1− 2φ)δij + 2E,ij ]dxidxj ], (2)

where δij is the background metric.
By definition any perturbation done in any quantity

its the difference between its value in some event in
real space-time, and its corresponding value, through
the metric, in a event in the background.

The energy-momentum tensor for a scalar field min-
imally coupled to the gravitational potential is given by

T νµ = Φ,µ Φ,ν −
[

1

2
gµνg

αβΦ,α Φ,β +gµνV (Φ)

]
.

(3)
We separate the tensorial quantities in a background

value and a perturbation according to

T = T 0 + δT , (4)

where the value for the background is only time de-
pendent T 0 ≡ T 0(η), while the perturbations depend
on both time and space coordinates xµ = [η, xi], i. e,
δT ≡ δT (xµ).

The sign convention is taken to be (+ + +). When
considering perturbations on the metric, we are taking
the scalar field theory in a homogeneous and isotropic
space-time.

The scalar field Φ is also separated in a background
term and a first order perturbation according to (4),

Φ(xµ) = Φ0(η) + δΦ(xµ),

the potential V ≡ V (Φ) is separated in an analogous
way where in this case,

δV = V,Φ δΦ,

and V,Φ≡ ∂V
∂Φ .

The energy-momentum tensor for the scalar field with
potential V (Φ) is also separated in a background term
and a fist order perturbation. For the zero components
of (3) we have:

T 0
0 = −ρ̂ = −

(
1

2
Φ̇2

0 + V0

)
,

T ij = p =

(
1

2
Φ̇2

0 − V0

)
δij .

And for the zero order components of Einstein’s ten-
sor;

G0
0 = −3

ȧ2

a2
, Gij = −

(
ȧ2

a2
+ 2

ä

a

)
.

Using Gij = 8πGT ij , for the equations of motion for
an homogeneous background with scale factor a(t) and
Hubble parameter H ≡ ȧ

a we have:

8πGρ = 3H2, (5)
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4πG(ρ+ 3p) = −3Ḣ. (6)

Equations (5) and (6) are usually known as Friedmann
equations.

From these set of equations we can notice that when
talking about the background, the only zero order quan-
tities are the energy density ρ, the pressure p and the
volumetric expansion 3H .

Scalar fields are governed by Klein-Gordon’s equa-
tion, that can be obtained through the conservation equa-
tion

∇µTµν = 0,

and is given by

Φ̈0 + 3HΦ̇0 + V,Φ = 0.

Remember that the perturbed metric has 10 indepen-
dent components inside a four dimensional space, but
we only have six independent Einstein equations. We
then have to fix the remaining four degrees of freedom
by making a choice of the gauge.

In this section we develop the theory through, the
Newtonian gauge, it is the most convenient gauge for
the study of scalar perturbations.

As alway we are still considering a spatially flat back-
ground with scalar perturbations on the metric. Remem-
ber that in this case we have set the speed of light c
equal to unity.

We now have the basic equations to study the non-
perturbed FLRW space, which is being occupied by
minimally coupled real scalar field.

We can estimate the dimensions for the background
and perturbed variables, in the unit system where c ≡ 1.
As 8πG = [M−1T 2], where M and T indicate mass
dimensions (energy) and time (length) respectively, we
then have:

[ρ] = [p] = [δρ] = [δp] = [MT 4],

[Φ̇0δφ] = [MT 3], [φ] = [ψ] = 0,

[Φ0] = [δΦ] = [M1/2T−1], [V ] = [MT 4].

We now derive the perturbed evolution equations for
the different quantities mentioned above; the scalar per-
turbation δΦ and the scalar potential φ. For the per-
turbed energy-momentum tensor, we have:

δT 0
0 =−δρΦ = −(Φ̇0

˙δΦ− Φ̇2
0ψ + V,Φ δΦ),

δT 0
i =−1

a
(Φ̇0δΦ,i ),

δT ij = δPΦ = (Φ̇0
˙δΦ− Φ̇2

0ψ − V,Φ δΦ)δij . (7)

In the above equations the dots denote differentiating
with respect to the cosmological time t, which is related
to the conformal time by d/dη = a(d/dt).

Using the energy-momentum tensor and the equa-
tion for the conservation of energy we obtain Klein-
Gordon’s equation or the equation for the scalar field to
first order

∇µTµν = Tµν,µ + ΓµαµT
α
ν − ΓανµT

µ
α = 0,

where the connection coefficients (Christoffel symbols)
are given by

Γγβµ =
gαγ

2
(gαβ,µ + gαµ,β − gβµ,α).

Then, using the perturbed metric and the perturbed
energy-momentum tensor to first order we obtain the
equation for the field to first order

δ̈Φ + 3H ˙δΦ− 1

a2
∇2δΦ + V,ΦΦ δΦ + 2V,Φ φ

− Φ̇0φ̇− 3Φ̇0ψ̇ −
Φ̇0

a
∇2[aĖ −B] = 0. (8)

The Newtonian gauge is defined by making B =
E = 0, i. e., the shift and anisotropic potential are taken
as zero, [5].

Note that the Newtonian gauge (also called longitu-
dinal gauge) is a gauge with restrictions, this gauge is
only applied to the scalar modes of the perturbations
in the metric; the vector and tensor degrees of freedom
are eliminated since the beginning. In this case only the
scalar perturbations are taken into account.

One of the advantages of working with this gauge is
that the metric tensor gµν becomes diagonal, and this
allows for the maths to become easier. Another advan-
tage is that φ will now play the part of the gravitational
potential making easier for us to give a physical inter-
pretation of the results. In this case, the two scalar po-
tentials φ and ψ become identical ψ − φ = 0. Usua-
lly this equation contains a term of anisotropic stress,
which vanishes in the case of a scalar field. Altogether,
to first order, the perturbed Einstein’s equations δGij =

κ2δT ij for a scalar field in the Newtonian gauge are

−8πGδρΦ = 6H(φ̇+Hφ)− 2

a2
∇2φ,

8πGΦ̇0δΦ,i = 2(φ̇+Hφ),i ,

8πGδPΦ = 2[φ̈+ 3Hφ̇+ (2Ḣ +H2)φ], (9)

which are in accordance with previous results obtained
by [6,7] and others.

Equations in (9) can be rearranged to find an equa-
tion for φ:

φ̈+ 6Hφ̇− 1

a2
∇2φ+ (2Ḣ + 4H2)φ

+ 8πGV,Φ δΦ = 0. (10)
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For the perturbed Klein-Gordon equation in the newto-
nian gauge

δ̈Φ + 3H ˙δΦ− 1

a2
∇2δΦ + V,ΦΦ δΦ

+ 2V,Φ φ− 4Φ̇0φ̇ = .0 (11)

To solve the evolution equations it has become com-
mon to work on Fourier space instead of real space. The
beauty of this expansion relays on the fact that each
Fourier mode will the evolve independently.

To first order the change to Fourier components are
nearly made implicitly. The perturbation δΦ related to
its Fourier component δΦk by

δΦ(t, xi) =

∫
d3kδΦ(t, ki)exp(ikix

i)

=

∫
d3kδΦkexp(ikix

i), (12)

where ki is the wavenumber, so that the relation k =
2π/λ is full filed, being λ the wavelength of the pertur-
bations.

The procedure to first order is very simple: the only
change in the equations is to replace δΦ by δΦk(ki)
and the laplacian by

∇2 → −k2

where k2 ≡ kiki, so that for the gradient operator we
have

∂i → −iki.

We now have all the tools needs to rewrite the first or-
der evolution equations in terms of their Fourier com-
ponents.

The equations for the perturbed scalar field in Fourier
space are then:

8πG(3HΦ̇0δΦk) +
2k2

a2
φ = −8πG(Φ̇0

˙δΦk − φΦ̇2
0 + V,Φ δΦk),

2(Hφ+ φ̇) = 8πGΦ̇0δΦk,

2[φ̈+ 3Hφ̇+ (2Ḣ +H2)φ] = 8πG(Φ̇0
˙δΦk − φΦ̇2

0 − V,Φ δΦk).

(13)

For the corresponding Fourier transform of equation
(10) we have:

φ̈k + 6Hφ̇k + (
k2

a2
+ 2Ḣ + 4H2)φk

+ 8πGV,Φ δΦk = 0. (14)

and the Klein-Gordon equation (11) transforms into

δ̈Φk + 3H ˙δΦk + (
k2

a2
+ V,ΦΦ )δΦk

+ 2φV,Φ−4φ̇Φ̇0 = 0. (15)

These equations describe the evolution of the per-
turbations, (13) refers to the energy density ingredient,
(14) to the gravitational potential and finally (15) refers
to the perturbations of our scalar field.

3. Results

One of the main objectives of this work was to study
the qualitative properties of our cosmological model

using the theory techniques of a dynamical system. As
we have seen before we suppose the Universe governed
by the General Theory of Relativity.

Now will study the cosmological evolution of the
growth of the scalar field over densities, δρΦ, in the
linear regime. In order to obtain a numerical solution
for the density contrast δ = δρΦ/ρΦ0

, the following di-
mensionless variables are defined

l1 ≡ φ, l2 ≡ φ̇/H, y1 = δ,

z1 ≡
κ√
6
δΦk, z2 ≡

κ√
6

˙δΦk
H

.
(16)

Using these definitions, the evolution equations are
transformed into an autonomous system with respect to
n, with n = lna, i. e., d

dt = H d
dn , where from now on

the upper comma will denote derivative with respect to
the e-folding n.
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l′1 = l2,

l′2 = 3l2

(
Π

2
− 2

)
+ l1(3Π− 4)− 6z1us−

k2s2l1
m2a2

,

z′1 = z2,

z′2 = 3z2

(
Π

2
− 1

)
− z1s

2

(
k2

a2m2
+ 1

)
− 2usl1 + 4l2x,

y′1 = −3

[(
xz2 − x2l1 − usz1

xz2 − x2l1 + usz1

)
− wΦ0

]
y1 + 3l2FΦ −

GΦ

H
,

(17)

where GΦ/H = 2k2s2(l1 + l2)/3a2m2ΩΦ0 and the
functions s, x, u and Π are taken from [8] by consis-
tency.

The density contrast parameter is used in cosmology
when talking about structure formation to indicate that
there exists local agglomeration of matter density.

It is believed that after inflation although the Universe
was almost uniform, some regions where more dense
than others with very big density contrasts. As the Uni-
verse expanded the gravitationally connected masses in-
creased until they began to collapse, allowing the for-
mation of galaxies, clusters, superclusters, etc....

It is common to define the density contrast as δ =
δρ/ρ. So making use of our dimensionless variables for
the density contrast we have

y1 =
2[x(z2 − xl1) + usz1]

ΩΦ0

. (18)

We can se that the unknown variables in our system
are then φ, δΦ and δ. Once these are known we can
determine the solution to our dynamic equations.

Next we will integrate our dynamical system, and we
will analyze if it can reproduce the observed Universe.

The evolution equations where solved taking the val-
ues for the background from [8]. So, taking into account
the evolution of the density parameters for the back-
ground, we can now compute the evolution of both φ
which perturbs the metric and the perturbation on the
scalar field, which appears in Klein-Gordon’s equation.

We start with a perturbation with wavelength λk =
2Mpc and density contrast δ = 1× 10−7.

As was mentioned in [8], it is expected that this kind
of scalar field forms a BEC, this gives an upper limit for
the mass mΦ of the scalar field, mΦ < 10−17eV. In our
case we took an estimate of approximately 1×10−23eV.

Taking into account all the considerations made
above for the initial conditions, we can now completely
integrate our dynamical system to obtain the cosmolog-
ical evolution of φ and δΦ, which are shown in Fig.1
and Fig.2 respectively,

Fig.2 shows the cosmological evolution of the per-
turbed scalar field as a function of the scale factor a. As

we said before at very early epochs of the Universe the
SF was in thermal equilibrium with its surroundings and
the temperature of the Universe was very high, domi-
nated mainly by radiation, thus making the amplitude
of the fluctuations of the SF very large due to its inter-
actions. As the temperature decreases the SF decouples
from the rest of the matter, so that the surrounding in-
teractions are negligible after the decoupling. The evo-
lution of the gravitational potential for this perturbation
is shown in Fig.1. Note that the gravitational potential
remains constant from a ∼ 10−5 all along up to the
matter-dominated regime.

With these ingredients we can now analyze one of
the main quantities when talking about structure forma-
tion. We analyze the density contrast in detail, whose
expressions are given by (18) or (17). As was mentioned
before, this quantity depends on both, the gravitational
potential φ and the perturbations on the SF, δΦ, related
to the variables l1 and z1 respectively.

We shall remember that our equations are in Fourier
space and as a result we obtained a set of independent
differential equations for each Fourier mode.

Note: we have normalized the scale factor such that
a = 1 today, this makes its relation with the redshift z
to go as a = (a+ z)−1, with this comoving and physi-
cal coordinates match today.

In Fig.3 we can see that with the imposed initial con-
ditions there is a quick growth in the scale of the den-
sity contrast. Recent observations have taken un to think
that at very early epochs in the origin of the Universe,
there already existed well formed large-scale structure,
corresponding to z ≤ 10, [9].

It is clear from Fig.3 that by z ≤ 10 there already
existed well defined perturbations on the energy den-
sity, which could help for the early formation of struc-
ture. Then, if clusters could form as early at these z this
would imply that the Φ2 SFDM model could give an
explanation for the characteristic masses that are being
observed, for more details on the dynamical system see
[10].
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Fig. 1. Evolution of the gravitational potential.
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Fig. 2. Evolution of the perturbations on the scalar field.

4. Conclusions

We have investigated the different perturbations that
act upon our scalar field with a Φ2 potential and who
seem to have important consequences in the formation
of structure in our Universe. We observe that our results
do behave as expected depending on the initial condi-
tions.

In this work we supposed a flat Universe, initially ho-
mogeneous and built up by a scalar field with potential

1
2m

2Φ2 as dark matter y which upon acts a gravitational
potential φ for the analysis of first order perturbations.

Once calculated the perturbations over φ and δΦ, we
obtained the density contrast δ, for which we simulated
its initial perturbations from a = 1× 10−6, i. e., before
recombination. So, if there already existed perturbations
by this epoch we expect to have well formed massive
structures at high redshifts, around z < 10.

If observations find that big structures already ex-
isted and where well formed at this z’s, we could
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Fig. 3. Evolution of the density contrast δ for λ = 2Mpc

have evidence for our cosmological model to be right,
predicting such events.

The calculations done in this work are only to first
order, so these are valid only in the linear regime and
should be taken with care.

If the observations reveal that there is no struc-
ture at time dimensions mentioned here, i. e., there is
no structure formation before recombination, then our
cosmological model can be ruled out because of incon-
sistency with such observations.

In this work we have seen that the cosmological
limits depend upon the model one is working with,
therefore it is based on a specific theoretical model, even
though it may be in agreement with actual observations,
we need much more ingredients to explain mysteries
and inconsistencies such as dark matter.
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