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Abstract

In this paper we explore the possibility of underwater quantum sensing. More specifically, we analyze
the performance of a quantum interferometer submerged in different types of oceanic water. Because of
the strong optical attenuation produced by even the clearest ocean waters, the supersensitivity range of an
underwater quantum sensor using N = 2 NOON entangled states is severely limited to about 18 meters,
while the advantage provided by entanglement disappears at about 30 meters. As a consequence, long-range
underwater quantum sensing is not feasible. Nevertheless, we discuss how underwater quantum sensing
could be relevant for the detection of underwater vehicles.

Keywords: Quantum information, quantum sensing, underwater sensing..

Resumen

En este articulo exploramos la posibilidad de detección cuántica subacuática. En particular, analizamos el
comportamiento de un interferometro cuántico sumergido en diferentes tipos de aguas oceánicas. Debido
a la fuerte atenuación óptica producida por aguas oceánicas, incluso las más puras, el rango de super-
sensitividad de un detector cuántico subacuático usando estados NOON con N = 2 está severamente
limitado a una profundidad de 18 metros, mientras que la ventaja debida a los estados entrelazados
desaparece a unos 30 metros. Como consecuencia, la detección cuántica subacuática de largo alcance no
es posible. Sin embargo, discutimos como la detección cuántica subacuática pudiera ser importante para
la detección de vehı́culos submarinos.

Palabras Claves: Información cuántica, detectores cuánticos, detección submarina.

1. Introduction

One of the major scientific thrusts from recent years
has been to try to harness quantum phenomena to dra-
matically increase the performance of a wide variety
of classical information processing devices. In partic-
ular, it is generally accepted that quantum computers
and communication systems promise to revolutionize
our information infrastructure.

These advances in quantum information science have
had a considerable impact on the development of quan-
tum sensors [1]. That is, sensing devices that exploit
quantum phenomena in order to increase their sensi-
tivity. In particular, it is hoped that quantum sensors
can be used to beat the standard quantum limit, which
bounds the performance of most of our modern sensing
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devices 2 .

Fig. 1. Mach-Zehnder interferometer with input ports A and B, out-
put ports C and D, and a phase delay φ in one of the arms.

In this paper we will consider the possibility of un-
derwater quantum sensing. More specifically, we will
analyze the performance of a Mach-Zehnder interfer-
ometer submerged in three different types of oceanic
water.

To this end, let us consider the Mach-Zehnder inter-
ferometer made of two mirrors and two beam splitters
as shown in Figure 2. One of the arms of the interferom-
eter introduces an unknown phase delay φ. The value
of φ can be estimated by measuring the intensity (i.e.
number of photons) of the two output beams. We will
consider both cases, using entangled and non-entangled
photons to perform the estimation of φ.

2. Optical Attenuation

Any realistic description of a classical or quantum in-
terferometer needs to account for the attenuation losses
due to the medium traversed by the photons. We con-
sider two major contributions to underwater attenuation:
absorption and scattering [5]. Absorption is the process

where photons are absorbed by the medium and their
energy is dissipated as heat. On the other hand, scatter-
ing is the process where photons are absorbed by the
medium and re-emitted in some direction with mini-
mal thermodynamic energy dissipation. In this section
we will briefly discuss attenuation in the classical and
quantum realms.

2.1. Attenuation of Classical Light

In the context of classical electrodynamics, the en-
ergy flux of a parallel beam of light Φ(r) is attenuated
due to absorption and scattering as:

Φ(r) = Φ(0) e−χcr (1)

where χc is the total attenuation coefficient and can be
written as:

χc = χa + χb (2)

where χa is the absorption attenuation coefficient and
χb is the scattering attenuation coefficient [5].

For convenience, the oceanic waters have been di-
vided in Jerlov Water Types that approximately share
the same optical properties [6]. The Jerlov water types
under consideration and their respective attenuation co-
efficients χc for light at λ = 480 nm are given in Table
1 [5, 6]. We have selected λ = 480 nm because this
wavelength corresponds to the optical window of min-
imal optical attenuation in sea water 3 .

The Jerlov classification is only a matter of conve-
nience as it may be inaccurate in many scenarios. It is
important to stress that the values in Table 1 are only
approximated. Indeed, the optical properties of ocean
water tend to change with depth, seasonal changes, and
weather effects [7]. In what follows, we will assume
that the quoted value for the attenuation coefficients is
constant over the range of interest.

2 The standard quantum limit is a consequence of the discrete nature of the electromagnetic field, as well as the Poissonian statistics of
classical light [2]. These properties of quantum light translate into vacuum fluctuations that affect the measurement of the amplitude of an
electromagnetic field [3, 4]. In a sense, these features of the quantum electromagnetic field tend to prevent the cooperative behavior of the
photons [1]
3 In general, the attenuation coefficient depends on the depth, hydrography, seasonal changes, as well as local and global atmospheric and
oceanic conditions [5]
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Table 1. Approximate value of the total attenuation coefficient χc
for the three main Jerlov ocean water types for λ ≈ 480 nm [5, 6].

Jerlov Type Description Examples χc (m−1)

I Clearest Mid-Pacific and Atlantic Oceans 0.03

II Intermediate Northern Pacific Ocean 0.18

III Murkiest North Sea and East Atlantic 0.3

Fig. 2. Optical attenuation for λ ≈ 480 nm in clear (red), interme-
diate (green), and murky (blue) ocean waters.

The total optical attenuation as a function of range for
the underwater optical interferometer operating in three
different types of oceanic waters is shown in Figure .
It can be observed, for example, that for clear oceanic
waters (Jerlov Type I), only 9% of the light is able to
reach a depth of 80 meters, and only 5% reaches a depth
of 100 meters.

2.2. Attenuation of Quantum Light

The quantization of the electromagnetic field in atten-
uating media is much more complicated than in vacuum
[8–11]. For instance, the consistent theoretical treatment
of attenuating media requires the quantization of inter-
acting electromagnetic, matter, and reservoir fields [9].

While this quantization procedure is so robust that it
allows the prediction of the dielectric constant of the

medium, the resulting expressions are too difficult for
any analytical study. Also, it is very difficult to inte-
grate phenomenological values of the attenuation con-
stant into the theoretical model.

Fig. 3. The attenuation of quantum light fields (scattering + absorp-
tion) can be modeled using a chain of beam splitters [12, 13]

However, it is possible to obtain simplified equa-
tions if one assumes that the medium is adequately de-
scribed by a chain of beam splitters as shown in Figure
2.2 [12,13]. The incident light field in each beam splitter
is represented by the field operator âin. The light field
that is scattered or absorbed by the medium is repre-
sented by âs. Also, the possible contributions from the
medium to the light field are represented by b̂. Finally,
the net output of light is described by âout. Then, it can
be shown that the traversal of the chain of beam split-
ters modifies the annihilation quantum operator into:

â(ω) −→ e(ik−χc(ω)/2)r â(ω) + i
√
χc(ω)

∫ r

0

dx e(ik−χc(ω)/2)(r−x) b̂(ω) (3)

where:

k =
ω η(ω)

c
(4)
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and η(ω) is the refraction index of the medium
[12,13]. As usual, the expression for the creation oper-
ator â(ω)† is the Hermitian-conjugate of â(ω).

This quantization scheme offers a simpler phe-
nomenological theory, where it is relatively easy to plug

the experimental values for the attenuation coefficient
χc. However, because of the presence of attenuation due
to the external field operator b̂(ω), the quantum light
field has to be treated as an open quantum system [14].

As an example, let us consider the NOON state:

|ΨNOON 〉 =
1√
2

(|N〉1|0〉2 + |0〉1|N〉2) =
1√
2

(
(a†1)N√
N !

+
(a†2)N√
N !

)
|0〉1|0〉2 (5)

where the subindex identifies the arms of the interfer-
ometer [15]. After propagating each component across
distances L1 and L2 over two different media charac-

terized by refraction indices η1 and η2, and attenuation
coefficients χc1 and χc2, we get:

|Ψ′NOON 〉 =
1√
2N !

[
e−(iωη1/c−χc1(ω)/2)(NL1)

(
â†1

)N
|0〉1|0〉2 + e−(iωη2/c−χc2(ω)/2)(NL2)

(
â†2

)N
|0〉1|0〉2

]
+ |Φ〉

(6)

where |Φ〉 is a state that represents those states that
have been scattered outside the NOON basis due to the
b̂(ω) contribution to â(ω).

3. Quantum Interferometry

The NOON states are often proposed for a variety
of quantum sensing applications. Each half of the en-
tangled state passes through a different arm of a Mach-
Zehnder interferometer. We can assume that we are in-

terested in measuring a phase difference φ that arises
when photons are sent through the second arm of the
interferometer [16, 17]. The effect of this phase shift φ
on the NOON state is given by:

|Ψ(φ)
NOON 〉 =

1√
2

(
|N〉1|0〉2 + eiNφ|0〉1|N〉2

)
(7)

We can write the NOON state in terms of the creation
and annihilation operators as:

|Ψ(φ)
NOON 〉 =

1√
2

(
(a†1)N√
N !
|0〉1|0〉2 + eiNφ

(a†2)N√
N !
|0〉1|0〉2

)
=

1√
2N !

(
(a†1)N + eiNφ(a†2)N

)
|0〉1|0〉2 (8)

In order to measure the phase shift φ, the detector
has to implement a measurement of the following ob-
servable:

ÂD = |N0〉〈0N |+ |0N〉〈N0| (9)

=
1

N !

(
(a†1)N |0〉〈0|(a†2)N + (a†2)N |0〉〈0|(a†1)N

)
where in the sake of simplicity we have dropped the
subindices labeling the arms of the interferometer.

With this setup, the amount of “noise” is given by:

∆2AD =
(
〈Â2

D〉 − 〈ÂD〉2
)

= sin2Nφ (10)

Indeed, the noise is correlated to the phase difference
φ introduced by the system. As expected, φ = 0 implies
no noise:

∆2AD|φ=0 = 0 (11)
The phase responsivity is:

d〈ÂD〉
dφ

= −N sinNφ (12)

and the phase estimation error can be approximated by:

δφ ≈ ∆AD

|d〈ÂD〉
dφ |

=
1

N
(13)

That is, this interferometric phase measurement proce-
dure using highly entangled states is able to reach the
1/N Heisenberg limit [16, 17].

4. Attenuated Quantum Interferometry

Let us consider the exact same interferometric exper-
iment described above, but now the interferometer is
immersed in an attenuating medium [18, 19]. The ex-
pression for the propagation of an attenuated NOON
state was given in Equation (6).

In the interferometric experiment described above,
the amount of noise is now given by:
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∆2AD =
1

2

(
αN1 − 2αN1 α

N
2 + αN2 + (α1α2)

N
sin2N(φ− φ0)

)
(14)

while the phase responsivity is:

d〈ÂD〉
dφ

= −N(α1α2)N/2 sinN(φ− φ0) (15)

and we have defined the transmittance of the medium
as:

αi ≡ e−χciLi (16)

and the dispersion phase shift as:

φ0 ≡
ω

c
(η2L2 − η1L1) (17)

Then, the phase estimation error is given by:

δφ =

√
1

2αN
1

+ 1
2αN

2

− 1 + sin2N(φ− φ0)

N | sinN(φ− φ0)|
(18)

As expected, it is only in the limit of no attenuation:

lim
α1→1

lim
α2→1

δφ =
1

N
(19)

that the Heisenberg limit can be achieved.

5. Separable States

For comparison purposes it is useful to know the
phase estimation error in the case where one uses sepa-
rable states instead of entangled NOON states [18,19].
The state (without attenuation) is taken to be:

|ΨS〉 =
1√
2N

(|10〉+ |01〉)⊗N (20)

which can be rewritten as:

|ΨS〉 =
1√
2N

N∏
j=1

(
â
†(j)
1 + â

†(j)
2

)
|0〉1|0〉2 (21)

The observable for separable states is:

ÂS =

N⊕
j=1

(
|01〉(j)(j)〈10|+ |10〉(j)(j)〈01|

)
(22)

Introducing the attenuation of the states as we did be-
fore, we obtain the following variance on the phase
measurement:

∆2AS =
N

2
(α1 − 2α1α2 + α2)+N α1α2 sin2(φ−φ0)

(23)
and a phase responsivity:

d〈ÂS〉
dφ

= −N
√
α1α2 sin(φ− φ0) (24)

As a consequence, the phase estimation error is:

δφ =

√
1

2α1
+ 1

2α2
− 1 + sin2(φ− φ0)

√
N | sin(φ− φ0)|

(25)

which in the no-absorption limit takes the value:

lim
α1→1

lim
α2→1

δφ =
1√
N

(26)

As expected, separable states cannot be used to beat the
1/
√
N standard quantum limit even in the absence of

attenuation.

6. Underwater Quantum Interferometry

Let us analyze a quantum interferometer submerged
in Jerlov oceanic water type I (χc = 0.03m−1) and
type II (χc = 0.18m−1) The behavior of the phase er-
ror for both cases can be observed in Figure 6 using
N = 2 entangled NOON states for distances of 10 and
30 meters (type I) and 2 and 4 meters (type II). The
phase estimation error depends on the value of φ and it
never reaches the Heisenberg limit (the vertical line at
δφ = 0.5). As one would expect, the phase estimation
error increases as the attenuation coefficient increases.
Furthermore, the phase estimation error increases with
the range to the target.

Fig. 4. Phase estimation error for Jerlov oceanic water type I (χc =

0.03m−1) and II (χc = 0.18m−1).

Let us now consider a quantum interferometer sub-
merged in Jerlov oceanic water type I (χc = 0.03m−1)
and in a hypothetical oceanic water with an attenuation
twice as large (χc = 0.06m−1). The range to target is
fixed at 15 meters. The behavior of the phase estimation
error is shown in Figure 6. Once again, the phase esti-
mation error increases as the attenuation coefficient in-
creases. It can be observed that the effect of this change
on the minimum phase estimation error is substantial.

5



Jou.Cie.Ing, Vol.6, No.1, Agosto de 2014, pp. 1-10

Fig. 5. Phase estimation error for Jerlov oceanic water type I (χc =

0.03m−1) and a hypothetical oceanic water with an attenuation
twice as large (χc = 0.06m−1).

But perhaps more dramatic, it can be observed that
the phase estimation error diverges when the sine func-
tion in the denominator of Equation (18). is close to
zero. The number of divergent points in a range of val-
ues of φ depends on the number of photons N . Figure 6
compares the case of 2, 4, and 8 photons. The reason for
these divergences is not physical, but a consequence of
the approximation used for the phase estimation error:

δφ ≈ ∆AD

|d〈ÂD〉
dφ |

=

√
1

2αN
1

+ 1
2αN

2

− 1 + sin2N(φ− φ0)

N | sinN(φ− φ0)|
(27)

which does not hold well in the regions where the sine
function in the denominator becomes zero. That is, the
approximation does not hold for those points near:

N (φ− φ0) ≈ 0, π, 2π, ..., nπ (28)

where n is an integer number.

Fig. 6. Phase estimation error for 2, 4 and 10 entangled photons.
The higher the number of photons, the more divergence points are
found.

In any event, one can see that the phase estimation
error is minimal when the sine function in the denomi-
nator is 1. That is:

δφ
(e)
min ≈

1

N

√
1

2αN1
+

1

2
(29)

where we have ignored the contribution from the second
arm, assuming it is in a well controlled, non-attenuating,
environment inside the sensing apparatus.

Fig. 7. Phase estimation error using N = 2 non-entangled photons.

As shown in Figure 6, a similar behavior is observed
in the case of quantum interferometry using separable
states. In this case, however, the minimum value of the
phase estimation error is given by:

δφ
(ne)
min ≈

1√
N

√
1

2α1
+

1

2
(30)

Notice that in the limit of no attenuation, Equations
(29) and (30) reduce to the Heisenberg limit and to the
standard quantum limit, respectively.

Now let us assume that somehow we reach the mini-
mum phase estimation error. The range of the detection
system for the entangled (Ψe) and non-entangled (Ψne)
cases are shown in Figure 6. As expected, the entan-
gled system is able to reach the Heisenberg limit (HL)
at very small distances, while the separable state merely
reaches the standard quantum limit (SQL). For an at-
tenuation corresponding to Jerlov oceanic water type I,
the estimation process using entangled states exceeds
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the standard quantum limit up to about 18 meters. On
the other hand, as shown in Figure 6, this supersensi-
tivity is restricted to about 3 and 2 meters in the case
of Jerlov oceanic water type II and III, respectively.
Clearly, the extent of the supersensitivity regime, where
HL ≤ δφ ≤ SQL, depends on the seawater attenua-
tion coefficient.

As a consequence, these observations make evident
that supersensitive long-range underwater phase estima-
tion using basic quantum interferometry with NOON
states is severely restricted due to the attenuating effects
of ocean water. However, this only means that NOON
states alone are not enough to build a robust long-range
supersensitive interferometric quantum sensor for prac-
tical applications.

Fig. 8. Minimum phase estimation error as a function of the range
to the target for N = 2 entangled Ψe and non-entangled Ψne pho-
tons in Jerlov oceanic water type I.

Fig. 9. Minimum phase estimation error as a function of the range
to the target for N = 2 entangled Ψe and non-entangled Ψne pho-
tons in Jerlov oceanic water type II and III.

It is also important to observe that, for long distances
the sensitivity of the entangled system becomes worse
than for the non-entangled system. This is observed to

happen at about 30 meters in Figure 6 for the scenario
corresponding to Jerlov oceanic water type I. Similar
effects are observed in Figure 6, at about 5 meters for
the type II scenario and at about 3 meters for type III
waters. That is, for the high visibility case, the use of
entanglement brings an improvement in phase measure-
ment up to about 30 meters.

In Figures 6 and 6 we can observe the performance
of the system when we use a larger number of entan-
gled states in the NOON state. The case for N = 10
is shown. It can be observed that in the case of Jerlov
oceanic water type I, supersensitivity is achieved up to
about 9 m, and at about 1 m for type III.

Fig. 10. Phase estimation error as a function of the range to the
target for N = 10 entangled Ψe and non-entangled Ψne photons
in Jerlov oceanic water type I.

Fig. 11. Phase estimation error as a function of the range to the
target for N = 10 entangled Ψe and non-entangled Ψne photons
in Jerlov oceanic water type II and III.
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Fig. 12. Phase estimation error for N = 2 and N = 10 for Jerlov
Type I ocean waters.

Fig. 13. Phase estimation error for N = 2 and N = 10 for Jerlov
Type II and III ocean waters.

Figures 6 and 6 compare the minimum phase esti-
mation error for N = 2 and N = 10. As expected, at
short distances the minimum phase estimation error is
reduced as N increases. However, the performance of
the highly entangled states degrades more quickly than
for the simpler entangled state.

Finally, it is worth comparing the performance of
quantum interferometry in air and water. In Figure 6
we show the phase estimation error for an attenuation
coefficient of 0.87 dB/km (χc ≈ 0.0002m−1) which
corresponds to λ = 480 nm light traversing average at-
mospheric conditions. It can be observed that range of
super-sensitivity is of about 2,800 meters.

Fig. 14. Atmospheric attenuation for the phase estimation error.

All the effects so far described are a consequence
of ocean water attenuation. If a quantum interferom-
eter system operates in a perfect vacuum for which
χc = 0, then the sensor using NOON states would op-
erate at its Heisenberg limit regardless of the traversed
distance (and the sensor operating with non-entangled
states would operate at its standard quantum limit re-
gardless of the traversed distance).

The fact that the supersensitivity regime may reach
up to 18 meters suggests that short-range phase estima-
tion may be feasible using quantum interferometry with
NOON states. However, many issues remain problem-
atic. For instance, we have assumed that the detectors
have perfect sensitivity. In reality this is not the case,
and the imperfect performance of the sensors involved
will diminish the supersensitivity regime achievable by
the system.

7. Detection of Underwater Vehicles

We have seen that underwater quantum sensing is
severely limited in range due to the attenuation prop-
erties of ocean water. Even in the case of the clearest
ocean water (Jerlov Type I), the maximum range of a
supersensitive underwater quantum sensor is of about
18 meters. And the advantage of using entangled states
disappears at about 30 meters. As already stated, long-
range quantum sensing is not feasible.

In spite of this negative result, there is an important
area of application in which underwater quantum sens-
ing could provide a great advantage. More specifically,
underwater quantum sensing could be used to detect
underwater vehicles at shallow depths (≈ 15 m).

Because of their small size, unmanned underwater
vehicles exhibit radar and LIDAR stealth. In addition,
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the electromagnetic fields generated by these vehicles
are so small that they are very difficult to detect using
magnetic anomaly detection (MAD) techniques [20].
However, a supersensitive LIDAR may be able to detect
underwater vehicles traveling at a nominal depth of 15
meters. At this point it is worth to mention that most
underwater operations are carried out in deep blue wa-
ters that correspond very closely to Jerlov Type I ocean
waters [21].

Fig. 15. Sketch of an interferometric quantum sensor used to detect
a shallow underwater vehicles in naval operations.

The use of a quantum LIDAR for underwater vehi-
cle detection in naval operations is sketched in Figure
7. The design showcases the same interferometric de-
sign discussed in the previous sections. Notice that if
we ignore the attenuation due to the atmosphere and the
air-water interface, then the maximum range of the un-
derwater quantum sensor is larger than the nominal op-
erational range of the underwater vehicle. Therefore, it
is feasible that such a device could bring an advantage
over the use of standard LIDAR sensing techniques in
naval operations.

So far we have been talking about phase estimation,
but these results can be easily generalized for the case
of range-to-target estimation, the natural function of a
LIDAR system. For a given wavelength λ, the range-
to-target estimation error δR can be approximated by:

δR ≈ λ

2π
δφ (31)

and as a consequence, for a fixed desired spatial reso-
lution δR:

δR(e) ≥ λ

2π N
∝ 1

N
(32)

δR(ne) ≥ λ

2π
√
N
∝ 1√

N

using entangled and non-entangled states, respectively
[22]. This means that for δRmin, the maximum resolu-
tion of the sensing device:

δR
(e)
min ∝

(
δR

(ne)
min

)2
(33)

That is, entanglement offers a quadratic improvement
in resolution over non-entangled states.

One may find surprising that if we use λ = 480 nm,
then the range error in the supersensitivity regime will
also be in the order of nanometers. It is not expected
that a quantum LIDAR will operate at this sensitivity
when detecting underwater targets. Indeed, this analy-
sis has considered the target as a perfectly reflective and
static object, which allows for a very sensitive measure-
ment. In a sense, the scenario discussed so far resembles
the situation with the Lunar Laser Ranging Experiment,
which is able to measure the distance from the Earth to
the Moon with milimetric accuracy [23].

8. Conclusions

In this paper we showed how, even in the case of
the clearest ocean waters (Jerlov Type I), the maximum
range of a supersensitive underwater quantum sensor
usingN = 2 NOON entangled states is of about 18 me-
ters. And the advantage of using entangled states over
non-entangled states disappears at about 30 meters. As
a consequence, long-range underwater quantum sensing
is not feasible.

Nevertheless, we argued that the detection of under-
water vehicles for naval operations is a potential applica-
tion of underwater quantum sensing that could bring im-
portant benefits even with its limited operational range.
Still, there are several open questions that remain to be
analyzed. For instance, we ignored the effect of the at-
mospheric column between the surface of the sea and
the airborne sensor, as well as the non-trivial effects
caused by the air-water interface. In addition, we did
not analyzed the actual detectability of an underwater
vehicle using a supersensitive quantum sensor. A more
detailed study exploring these issues will be carried out
in the near future.
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