
Canonical tensor scaling

Tensor escalar canónico

Tung Nguyen+1 and Jeffrey Uhlmann∗2
+Deparment of Physics and Astronomy
University of Missouri-Columbia
∗Deparment of Electrical Engineering and Computer Science
University of Missouri-Columbia

Abstract. In this paper we generalize the canonical positive scaling of rows and columns of a
matrix to the scaling of selected-rank subtensors of an arbitrary tensor. We expect our results
and framework will prove useful for sparse-tensor completion required for generalizations of the
recommender system problem beyond a matrix of user-product ratings to multidimensional
arrays involving coordinates based both on user attributes (e.g., age, gender, geographical
location, etc.) and product/item attributes (e.g., price, size, weight, etc.).

Keywords. Kuhn-Tucker conditions; scale invariance; tensor; recommender systems.

Resumen. En este art́ıculo se generaliza el escalamiento canónico de renglones y columnas
de una matriz a un escalamiento de subtensores de rango seleccionado de un subtensor
arbitrario. Esperamos que nuestros resultados y marco teórico sea útil para completar el tensor
disperso necesario para la generalización del problema del sistema de la matriz de evaluación
usuario-producto a arreglos multidisciplinarios basados tanto en atributos de usuario (edad,
sexo, geolocalización, etc.) como en atributos del producto o art́ıculo (precio, peso, tamaño,
etc.)

Palabras Clave. Condición de Kuhn-Tucker; invarianza de escala; tensor; sistemas de recomendación.

How to Cite. T. Nguyen and J. Uhlmann, “Canonical tensor scaling”, Jou. Cie. Ing., vol. 13, no.

1, pp. 13-21, 2021. doi:10.46571/JCI.2021.1.2

Received: 20/01/2021 Revised: 06/04/2021 Accepted: 22/04/2021

1. Introduction
A 1992 algorithm by Rothblum & Zenios [1], which we will refer to as the RZ algorithm, computes
a positive diagonal scaling of an arbitrary matrix so that the products of the nonzero normed
elements of each row and column (i.e., zero-elements are ignored) are equal to user-specified
constants. It has recently been recognized that in the case in which the constants are all
unity, a unique scaling always exists and can be used as a canonical scaling for performing
scale-consistent or scale-invariant operations on matrices [6]. For example, the algorithm can be
applied to define a generalized matrix inverse that is consistent with respect to diagonal scalings

1 e-mail: tdn84d@mail.missouri.edu
2 e-mail: uhlmannj@missouri.edu

Corporación Universitaria Autónoma del Cauca

ISSN 2145-2628, e-ISSN 2539-066X

MATHEMATICS

Journal de Ciencia e Ingeniería, vol. 13, no. 1, pp. 13-21, 2021
http://jci.uniautonoma.edu.co
DOI: https://doi.org/10.46571/JCI.2021.1.2

https://orcid.org/0000-0003-1163-2380
https://orcid.org/0000-0001-9163-521X
http://www.doi.org/10.46571/JCI.2021.1.2

(e.g., due to changes of units on variables), as opposed to the Moore-Penrose pseudoinverse
which provides consistency with respect to unitary transformations (e.g., rotations) [6]. Scale
consistency is critical to applications in which performance is expected to be invariant with
respect to the choice of state variables, e.g., whether lengths are represented in centimeters,
meters, or kilometers in robotics applications [9, 10, 11, 7] or unknown units specific to each
individual’s ratings of products in the context of recommender systems [4].

In this paper we generalize the canonical positive scaling of rows and columns of a matrix
to the scaling of selected-rank subtensors of an arbitrary tensor. We expect our results and
framework will prove useful for sparse-tensor completion required for generalizations of the
recommender system problem beyond a matrix of user-product ratings to multidimensional
arrays involving coordinates based both on user attributes (e.g., age, gender, geographical
location, etc.) and product/item attributes (e.g., price, size, weight, etc.).

2. Definitions
The objective of this paper is to identify a generalized canonical scaling of subtensors of a given
tensor. In the case of a matrix, i.e., a 2-tensor, the rows and columns can be interpreted as the
1-dimensional subtensors that can be scaled by the RZ algorithm. In order to generalize beyond
matrices to arbitrary d-dimensional tensors, or d-tensors, we must define notation for operating
on the k-dimensional subtensors that are to be scaled, where 1 ≤ k < d for integer parameter
k. This requires distinguishing the overlapping k-dimensional subtensors with respect to each of
the d coordinates. In the d = 2 case of a matrix with k = 1, for example, the dimensional label
set {1, 2} can be interpreted with (1) denoting the set of row vectors and (2) representing the
set of column vectors. In other words, the tuple (1, i) designates the ith row vector while (2, j)
designates the jth column vector1, and (2, i, j) would specify the jth element of the ith column.

In the d = 3 case of a 3-tensor, the choice k ∈ {1, 2} can be chosen to specify whether our focus
is on 2-dimensional subtensors (matrices) or 1-dimensional subtensors (vectors). For example,
k = 1 defines d = 3 sets of 1-dimensional subtensors, or fibers, each set of which can be thought
of intuitively as containing all of the vectors parallel to one of the 3 coordinate axes, e.g., set
(1) refers to all 1-dimensional subtensors that live in Rn1×1×1 ≡ Rn1 , and k = 2 defines all
possible 2-dimensional subtensors, or slices, comprising

(
3
2

)
= 3 sets of slices, the span of which

is determined by one of the pairs of indices (1, 2), (2, 3), or (1, 3). For instance, a pair (1, 3)
spans all possible 2-dimensional subtensors that live in Rn1×1×n3 ≡ Rn1×n3 . In other words,
it is possible to relabel these pairs as sets (1), (2), and

((
3
2

))
= 3. An important property of

the subtensors in each set is that they are disjoint from each other and can be stacked to form
the original d-dimensional tensor. In general, the k-dimensional subtensors of the d-dimensional

tensor can be partitioned into
((

d
k

))
sets, corresponding to the number of k-tuples chosen from

d dimensional indices. An alternative but equivalent interpretation is that there are
(
d
k

)
ways of

dividing a d-dimensional tensor into k-subtensors such that all subtensors in each set are disjoint
and any two subtensors in two different sets are different. This leads to the following definition.

Definition 2.1. - Sets of subtensors: Let Vi = Rni and assume a d-dimensional tensor
A ∈ V1 × V2 × · · · × Vd and a positive integer 1 ≤ k < d. From the set of dimensional indices
[d] = {1, . . . , d} we can obtain all

(
d
k

)
possible tuples of k dimensional indices. Specifically,

1 Matrices are special in that the terms rows and columns have been conventionally defined to distinguish two
sets of overlapping 1-dimensional subtensors/vectors. For our purposes the particular choice of the ordering of
the labels, i.e., the distinction between a given matrix and its transpose, is irrelevant. More generally, there is no
natural ordering of the d orientations of a d-tensor with names analogous to rows and columns, so for notational
purposes any arbitrary choice will work.

T.. Nguyen and J. Uhlmann Canonical tensor scaling

14

for any tuple {i1, · · · , ik} ⊆ [d], we enumerate all possible k-dimensional subtensors of A in

dimensions Vi1 × · · · × Vik to obtain the set of subtensors (i). Altogether we obtain
(
d
k

)
sets of

k-dimensional subtensors relabeled as (1), . . . ,
((

d
k

))
. We denote the number of subtensors in a

set (i) as its cardinality |(i)| and label its elements as

(i) = {Asi,i | 1 ≤ si ≤ |(i)|} (1)

for 1 ≤ i ≤
(
d
k

)
.

By this definition, all subtensors in each set (i) are disjoint and can combine to reconstruct
the tensor A. Each set (i) corresponds to a partition of the d-dimensional tensor into mutually
disjoint k-dimensional subtensors. This property implies the following observation.

Observation 2.1. Subtensors by position: Given a d-dimensional tensor A and position
~α = (α1, α2, · · · , αd). Then for each value A(~α) and each i for 1 ≤ i ≤

(
d
k

)
, there is a unique si

for 1 ≤ si ≤ |(i)| such that the subtensor Asi,i contains the position ~α of tensor A, denoted as
~α @A Asi,i.

From this observation, we define the following sets:

Definition 2.2. - Support sets of a subtensor Given a position ~α of A, define the support
set type 0 as

σA(~α) =

{
(s1, 1), . . . ,

(
s(dk)

,

(
d

k

))}
=

{
(si, i) | 1 ≤ i ≤

(
d

k

)
, ~α @A Asi,i

}
(2)

From here, given a pair (si, i) corresponding to a subtensor of A, define the support set type 1
as

σA(si, i) = {~α | (si, i) ∈ σA(~α), A(~α) 6= 0} (3)

where their union is the set of nonzero elements in the tensor A, denoted by σ(A),

σ(A) =
⋃
(si,i)

σA(si, i). (4)

Now we are equipped to define the scaling process. For notational convenience we define a
list M(i) of elements such that cM(i) multiplies/scales each element of every k-dim subtensor of
|(i)| as a single scaling process, and the product of a scalar in M(i) and a subtensor Asi,i scales
every elements of that subtensor and thus scales the tensor itself. We now formally define both
the set M(i) and notation for this scaling operator following the support set type 1 in definition
2.2.

Definition 2.3. - Scaling a tensor by a set of subtensors: Given a tensor A ∈ V1 × V2 ×
· · · × Vd. A value of a tensor A ∈ V1 × V2 × · · · × Vd at is defined as A(~α) ≡ A(α1, · · · , αd). The
list of scaling values with respect to (i) is defined as

M(i) = {Msi,i ∈ R6=0 | 1 ≤ si ≤ |(i)|},

The scaling operation ∗(i) is defined as

A′ ≡ A ∗(i) M(i) (5)

such that for each pair (si, i) and for every ~α ∈ σA(si, i)

A′(~α) = Msi,iA(~α). (6)

T.. Nguyen and J. Uhlmann Canonical tensor scaling

15

Consider the case when d = 3 and k = 2. Let A ∈ R3×4×2 be a tensor with the following 2
frontal slices.

A1 =

1 4 7 10
2 5 8 11
3 6 9 12

 , A2 =

13 16 19 22
14 17 20 23
15 18 21 24

 (7)

Then the set (3) contains the subtensors A1 and A2 and the scaling list M(3) = {α1, α2}, then
the scaling process by a list M(3) gives the new tensor A′ as

A′1 =

 α1 4α1 7α1 10α1

2α1 5α1 8α1 11α1

3α1 6α1 9α1 12α1

 , A′2 =

13α2 16α2 19α2 22α2

14α2 17α2 20α2 23α2

15α2 18α2 21α2 24α2

 (8)

At this point we have defined a particular type of structured scaling that can be applied to
elements of specified sets of subtensors of a given tensor. In the next section we iteratively apply
scalings of this kind to obtain a unique scaling with prescribed properties.

3. Unique Tensor Scaling
Using the representation and notation defined in the previous section, we demonstrate the
uniqueness and correctness of our generalization of the RZ algorithm for matrices (i.e., n = 2
and k = 1) to arbitrary tensors with 1 ≤ k < n.

3.1. Defining the k-dim scaling program:
3.1.1. Program I: We now follow and extend the approach of Rothblum and Zenios (RZ) in
[1] for the iterative scaling of 1-dimensional row and column vector sets of a matrix to the

general case for arbitrary scaling of
(
d
k

)
sets of subtensors of a given nonnegative tensor A,

which may be obtained by replacing the elements of a given tensor A′ with their magnitudes.
The algorithm begins with tensor A ∈ V1 × V2 × · · · × Vd and a list of strictly positive numbers
T = {Tsi,i | 1 ≤ si ≤ |(i)| and 1 ≤ i ≤

(
d
k

)
}. Let the scaling elements of

(
d
k

)
list M(i) of scaling

elements be applied in the scaling process of tensor A in label order from set (1) to set
(
d
k

)
. We

observe that the choice of ordering is free due to the the commutative property of the scaling
process.

Observation 3.1. The scaling of indices i1, i2 ∈
[(
d
k

)]
is commutative:

A ∗(i1) M(i1) ∗(i2) M(i2) = A ∗(i2) M(i2) ∗(i1) M(i1). (9)

In other words, a permutation of the dimensional indices will not affect the correctness of the
following problem formulation. Using definitions 2.2 and 2.3, we define the scaling problem:

Problem Statement: Find a non-negative tensor A′ ∈ V1 × V2 × · · · × Vd and
(
d
k

)
scaling

lists M(i) of positive elements with cardinality |(i)| such that:

A′ = A ∗(1) M(1) · · · ∗((dk)) M((dk))
(10)

or

A′(~α) ≡

{
A(~α) ·

∏
(si,i)∈σA(~α)

msi,i if ~α ∈ σ(A)

0 otherwise

T.. Nguyen and J. Uhlmann Canonical tensor scaling

16

and for each subtensor by a pair (si, i) ∏
~α∈σA(si,i)

A′(~α) = Tsi,i (11)

A logarithm conversion for tensor A,A′, and T is applied via the below-defined operator L̂ to
obtain tensors a, a′, and s:

a(~α) ≡ L̂(A(~α)) ≡
{
ln(A(~α)) if ~α ∈ σ(A)

0 otherwise

a′(~α) ≡ L̂(A′(~α))

(12)

We also let tsi,i ≡ ln(Tsi,i) and msi,i ≡ ln(Msi,i). Having performed the logarithm conversion of

the operator L̂, we present the following program,

Program I: Finding the tensor a′ ∈ V1 × V2 × · · · × Vd and
(
d
k

)
lists M(i) such that:

a′(~α) ≡

{
a(~α) +

∑
(si,i)∈σA(~α)

msi,i if ~α ∈ σ(A)

0 otherwise

and for each subtensor by a pair (si, i) ∑
~α∈σA(si,i)

a′(~α) = tsi,i (13)

3.1.2. Program II: The RZ model provides a basis for establishing the existence and uniqueness
properties of our tensor generalization. Briefly, let u ∈ Rp, b ∈ Rq, and C ∈ Rp×q be the original
convex optimization problem of finding a vector u′ ∈ Rp and ω ∈ Rq such that

u′T = uT + ωTC (14)

and
Cu′ = b (15)

It is proven in [1] that this problem is equivalent to the following optimization problem, for
which the properties of uniqueness and existence can be established and for x ∈ Rp:

min 2−1
p∑
j=1

(xj − uj)2

subject to Cx = b.

(16)

The details of the proof can be found in [1], but we will only apply the Kuhn-Tucker (KT)
conditions from Program I for our results. To establish the corresponding properties of the
RZ algorithm for our Program I, we apply the following transformations. We begin with a
transformation to unfold tensors a and a′ into the corresponding vectors u and u′ according to
the following definition.

Definition 3.1. - Unfolding tensor: Given a tensor a = V1× V2× · · · × Vd and P =
∏d
j=1 nj .

The unfolding vector u ∈ RP defined via the mapping a(~α) 7→ u(J(~α)) for

J(~α) = 1 +
d∑
s=1

(
(αs − 1)

s−1∏
m=1

nm

)

T.. Nguyen and J. Uhlmann Canonical tensor scaling

17

Regarding Cx = b and ωTC, we show (following [1]) KT conditions that Program I is
equivalent to

Program II: For any pair (si, i):

find min 2−1
∑

~α∈σA(si,i)

(x (~α)− a (~α))2,

subject to
∑

~α∈σA(si,i)

x(~α) = tsi,i.
(17)

3.1.3. Proof: We define the node-arc incidence matrix of tensor A as a matrix C of real numbers
with the objective of transforming the tensor problem to a matrix problem for which the solution
becomes equivalent to the RZ solution for C. Specifically, we establish formulas such that each
position of ωTC defined by a function J (~α) equals the sum of msi,i of Program I and each
position on Cx defined by a pair (si, i) equals to the nonzero sum of x of Program II. For
equation Cx = b, a function P with an ordering for (si, i) is defined as

P (si, i) =
i−1∑
i′=0

|(i′)|+ si, (18)

with the assumption |(0)| = 0. Then all elements tsi,i maps onto b and all elements msi,i maps
onto ω as

b (P (si, i)) = tsi,i, ω (P (si, i)) = msi,i. (19)

Note that the tensor x agrees with tensor a in terms of nonzero elements. With a slight abuse of
notation, we transform tensor x to a vector x by the unfolding mapping from definition 3.1. The

matrix C is defined with its column size equals N =
∏d
i=1 ni and its row size equals

∑(dk)
i=1 |(i)|.

CP (si,i)J(~α) ≡
{

1 if ~α ∈ σA(si, i)

0 otherwise.
(20)

Then the vector ω and C matrix satisfy

[ωTC]J(~α) =
∑

(si,i)∈σA(~α)

msi,i (21)

where the matrix b is defined using tsi,i such that Cx = b is equivalent to∑
~α∈σA(si,i)

x(~α) = tsi,i. (22)

Satisfaction of the KT conditions guarantees

0 =
∂

∂x(~α)

2−1
∑

~α∈σA(si,i)

(x (~α)− a (~α))2 − ωT (Cx− b)

=x(~α)− a(~α)− [ωTC]J(~α) = x(~α)− a(~α)−

∑
(si,i)∈σA(~α)

msi,i.

(23)

We now exploit the equivalence of our transformed formulation to that of the optimization
problem of section 3 of [1] to establish the characterization of solution. Before that, we have the
following lemma from Theorem 3.2 in [1].

T.. Nguyen and J. Uhlmann Canonical tensor scaling

18

Lemma 3.2. If Cx = b has a real solution x and there exists a vector λ with λTC = 0 then
λT b = 0.

Now, we have the characterization of solutions.

Theorem 3.3. (Characterization) The following statements are equivalent:

(i) There exists a solution to Program I

(ii) There exists a solution to Program II

(iii) There exists a non-negative tensor A′ ∈ V1 × V2 × · · · × Vd that satisfies Program I and
has σ(A) = σ(A′)

(iv) Program II is feasible

(v) Program II has a optimal solution

(vi) Given
(
d
k

)
list of real numbers µ(i) = {µsi,i ∈ R | 1 ≤ si ≤ |(i)|} with cardinality |(i)|

satisfying
∑

(si,i)∈σA(~α)

µsi,i = 0 for all ~α ∈ σ(A), then

(dk)∏
i=1

|(i)|∏
si=1

(Tsi,i)
µsi,i = 1. (24)

(vii) Similarly from condition 6,
(dk)∑
i=1

|(i)|∑
si=1

tsi,i · µsi,i = 0 (25)

Proof. Using the proof from Section 3 of [1] is sufficient to establish from statement (1) to
statement (6). Since statement (6) is equivalent to statement (7), we only show the equivalency of
statement (7) with former statements. Statements from (1) to (5) give that for the formulations

of vector ~b from (19) and matrix C from (20), Cx = b has an optimal solution x. Now, we use
lemma 3.2 by the following. Let’s consider λ such that λ (P (si, i)) = µsi,i, then

λTC [J(~α)] =
∑

(si,i)∈σA(~α)

µsi,i = 0 (26)

By lemma 3.2, we obtain statement (6) and the theorem is fully proved, followed specifically by

expanding the result ~λT~b = 0 by the expressions of numbers in list µ(i) and numbers tsi,i.

Specifically, we know that if there exists a solution x such that Ax = b, and vector ω such
that Aω = 0, then x + ω is another solution. Thus, additional solutions can be obtained from
the known solution of Program I based on statements (6) and (7) in Theorem 3.3.

Theorem 3.4. (Uniqueness) There exists at most one tensor A′ ∈ V1 × V2 × · · · × Vd such that

there exist
(
d
k

)
scaling lists M(i) = {Msi,i | 1 ≤ si ≤ |(i)|} of positive elements with cardinality

|(i)| such that the solution
(
A′,
{
M(i) | 1 ≤ i ≤

(
d
k

)})
satisfies Program I. Furthermore, if(

A′,
{
M1

(i) | 1 ≤ i ≤
(
d
k

)})
satisfies Program I, then for

(
d
k

)
lists D(i) = {Dsi,i ∈ R>0| | 1 ≤

si ≤ |(i)|} such that ∏
(si,i)∈σA(~α)

Dsi,i = 1 ∀~α ∈ σ(A), (27)

and MD1
(i) =

{
M1
si,i
Dsi,i | 1 ≤ si ≤ |(i)|, Dsi,i ∈ D(i)

}
, its general solution is(

A′,

{
MD1

(i) | 1 ≤ i ≤
(
d

k

)})
(28)

T.. Nguyen and J. Uhlmann Canonical tensor scaling

19

Proof. The proof of uniqueness follows from the RZ model, and the general solution follows
directly from Theorem 3.3 for the transformed expression of Program I.

4. Algorithm
To simplify the algorithmic representation, we define a function that maps the number of
elements in As,i from an input as a pair (s, i). This establishes a relationship between the
number of nonzero elements in Asi,i and the cardinality of σA(si, i). One important property is
that the cardinality of σA(si, i) equals to the number of nonzero elements in As,i. We establish
the following algorithm.

4.1. Algorithm for general k < d:
SCALING ALGORITHM FOR PROGRAM II

(i) Step 0 [initialization]: Set count ← 0. Select
(
d
k

)
list of scaling m(i) = {ms,i ∈ R | 1 ≤ s ≤

|(i)|} and
(
d
k

)
sets of subtensors (i) by definition 2.1 for d as the dimension of tensor A.

Define tensor a0 ∈ V1 × V2 × · · · × Vd such that

a0(~α) ≡

a(~α) +

∑
(si,i)∈σA(~α)

msi,i for ~α ∈ σ(A)

0 for ~α /∈ σ(A)

(29)

(ii) Step 1 [iterative step over constraint]: Let i = 1 and our goal is to iterate until i =
(
d
k

)
. For

si ∈ [|(i)|] , let

ρsi = [|σA(si, i)|]−1
tsi,i − ∑

~α∈σA(si,i)

astep(~α)

astep(~α)← astep(~α) + ρsi for ~α ∈ σA(si, i)

msi,i ← msi,i + ρsi

(30)

We then set i← i+ 1 and continue until i =
(
d
k

)
.

(iii) Step 2: Set count← count+ 1 and return to step 1. We also set the convergence condition
as the variance of the tensor elements projected by each of its dimensions is smaller than a
very small positive ε.

The time complexity of this algorithm is O

(dk)∑
i=1

|(i)|∑
si=1
|σA(si, i)|

 ≡ O
((

d
k

)
|σ(A)|

)
. This

complexity is unaffected by the final step of converting our solution over logarithms to our
desired solution as A(~α) = exp(a(~α)), which is proportional to the number of nonzero elements
of A.

5. Discussion
In this paper we have generalized the RZ algorithm [1] as specialized for the unique canonical
scaling of matrices [6, 8, 5] for the canonical scaling of arbitrary k-dimensional subtensors of
a given n-dimensional tensor. This algorithm provides a means for generalizing scale-invariant
methods presently applied to matrices to higher-dimensional structures, e.g., extending the
scaling-based image interpolation method of [8] to the interpolation of a video sequence treated
as a 3d array/tensor.

T.. Nguyen and J. Uhlmann Canonical tensor scaling

20

6. Acknowledgements
This work was sponsored in part by University of Missouri’s A&S Undergraduate Research
and Creativity Activity Mentorship Program. The authors thank Mark Ashbaugh for helpful
comments.

References
[1] U.G. Rothblum and S.A. Zenios, “Scalings of Matrices Satisfying Line-Product Constraints and

Generalizations,” Linear Algebra and Its Applications, 175:159-175, 1992.
[2] Stephan Rabanser, Oleksandr Shchur, and Stephan Gunnemann, “Introduction to tensor decompositions and

their applications in machine learning,” arXiv preprint, arXiv:1711.10781, 2017.
[3] G.H. Golub, C.F. van Loan, Matrix Computations, JHU Press, ISBN: 1421407949 9781421407944, 2013.
[4] Jeffrey Uhlmann, “ A Scale-Consistent Approach for Recommender Systems,” (arxiv.org/pdf/1905.00055.pdf),

2019.
[5] Jeffrey Uhlmann, “Unit Consistency, Generalized Inverses, and Effective System Design Methods,”

arXiv:1604.08476v2 [cs.NA] 11 Jul 2017 (2015).
[6] Jeffrey Uhlmann, “A Generalized Matrix Inverse that is Consistent with Respect to Diagonal

Transformations,” SIAM Journal on Matrix Analysis (SIMAX), 2018.
[7] Jeffrey Uhlmann, “A Rank-Preserving Generalized Matrix Inverse for Consistency with Respect to Similarity,”

IEEE Control Systems Letters, ISSN: 2475-1456, 2018.
[8] Rumana Aktar, K. Palaniappan, and Jeffrey Uhlmann, “A Method for Real-Time Interpolation of Packet-Loss

Blocks in Streaming Video,” Proceedings of 48th Annual IEEE AIPR 2019, (Washington, DC), 6 October,
2019.

[9] J.K. Uhlmann, “On the Relative Gain Array (RGA) with Singular and Rectangular Matrices,” Applied
Mathematics Letters, Vol. 93, 2019.

[10] Bo Zhang and Jeffrey Uhlmann, “Applying a Unit-Consistent Generalized Matrix Inverse for Stable Control
of Robotic Systems,” ASME J. of Mechanisms and Robotics, 11(3), 2019.

[11] Bo Zhang and Jeffrey Uhlmann, “Examining a Mixed Inverse Approach for Stable Control of a Rover,”
International Journal of Control Systems and Robotics, 5, 1-7, 2020.

T.. Nguyen and J. Uhlmann Canonical tensor scaling

21

