
Polynomial Maps of Spheres

Mapas de polinomios de esferas
Enrique Antoniano+1 and John J. Ucci∗
+ Department of Basic Sciences, Universidad Anahuac, México
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Abstract. The real multiplication map ∅m,m : Rm × Rm → R2m−1 induces a symetric
immersion ∅̃m : Sm−1 → RPm−1 → R2m−2 which by a theorem of E.H.Brown has mod two
Whitney invariant 1 if and only if m = 2p for some p ≥ 1. As an explanation of this fact we
provide an explicit regular homotopy from the immersion ∅̃m to another map essentially given
by a polynomial self map of Sm−1 whose degree equals the Whitney invariant of ∅̃m mod 2.
Another choice of a polynomial self-map of Sm−1 yields an immersion in the regular homotopy
class of ∅̃m whose Whitney invariant is visible from its double point set.
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Resumen. El mapeo de multiplicación polinomial ∅m,m : Rm × Rm → R2m−1 1induce una
inmersión simétrica ∅̃m : Sm−1 → RPm−1 → R2m−2 la cual, por un teorema de E.H. Brown
tiene invariante de Whitney 1 si y solo si m = 2p para algún p ≥ 1. Para explicar este
hecho, nosotros exhibimos una homotoṕıa regular entre la inmersión ∅̃m y otro mapeo dado
esencialmente por un auto mapeo polinomial de Sm−1 cuyo grado es el invariante de Whitney
de ∅̃m mod 2. AnotherOtra selección de auto mapeo polinomial de Sm−1 conduce a una clase
de homotoṕıa regular de ∅̃m cuyo invariante de Whitney es visible desde su conjunto de puntos
dobles.
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1. Introduction
Let ∅m,k : Rm × Rk → Rm+k−1 be the non-singular bilinear map given by polynomial
multiplication: for x = (x0, . . . , xm−1) , y = (y0, . . . , yk−1) , ∅m,k(x, y) = (z, . . . , zm+k−2),
where z = (z0, . . . , zm+k−2) and zh =

∑
i+j=h xiyj . ∅m,m determines a symmetric immersion

∅̃m : Sm−1 → RPm−1 → R2m−2 by restriction to the diagonal sphere and normalization of
its image. By a theorem of E.H. Brown [2] the mod 2 Whitney invariant of any symmetric
immersion (and hence of ∅̃m) is nonzero if and only if m = 2p for some p ≥ 1.
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About the adjoint fm,k of ∅m,k, K.Y.Lam [4] proved the following result. Recall [6] that the
group πm−1(Vm+k−1,k) is cyclic; let em−1denote a generator.

Theorem 1. (K.Y.Lam) Let m ≥ 1 and k ≤ 1

a) For m = 2p, k = 2h − i, i = 0, 1 [fm,k] =
(
p+h−1

p

)
em−1 ∈ Z2 or Z as k ̸= 1 or

k=1

b) For m = 2p+ 1, k = 2h− 1, [fm,k] =
(
p+h−1

p

)
em−1∈ Z

c) For m = 2p+ 1, k = 2h, [fm,k] = 0 ∈ Z.

This theorem is an easy consequence of the next result and a computation of the degree of a
map Pm,k which we now define:

For m ≥ 1, k ≥ 0 let Pm,k : Rm → Rm be the polynomial map defined by the matrix
equation Pm,k(x) = x { M(x)} k where x is the position row vector x = (x0, . . . , xm−1) and
M(x) is the m×m matrix whose first m−1 rows are (in order) the 2nd, . . . ,mth standard vectors
of Rm and whose last row is −x. We can extend the definition of Pm,k by setting Pm,k = (−1)

times the (m+ k − 1)st standard basis vector of Rm when −(m− 1) ≤ k ≤ −1. It follows that
M(x) has rows −Pm,−(m−1), . . . ,−Pm,−1, Pm,0(= −x)

Theorem 2. For m ≥ 1, k ≥ 1 there is a homotopy commutative diagram:

The proof of this theorem consists of an explicit homotopy given in 3. A calculation of the
degree of , Pm,k is given in 2.

The above discussion has a complex analog (e.g., a complex version of theorem 2) with Rm

replacing Rm. While we do not use this fact, we do calculate the degree of the analogous complex
polynomials Qm,k.

In 4. we relate theorems 1 and 2 to a question of L.Smith which ask for an explanation of
Brown’s theorem for the immersions ∅̃m. Also, in 4. as a further application, we offer a minor
simplification of Smith´s proof [5] of Brown’s theorem.

2. The polynomials
The homotopies we construct in 3. lead to the polynomial maps Pm,k defined in 1. The latter

satisfy the recurrence relation:

(2.1) Pm,k(x) = Pm,k−1(x) M(x), k ≥ −(m− 1)

Following a suggestion of T.Iwaniec, we consider the polynomial (in R[x0,x1, . . . , xm−1][λ])

(2.2) Rm,k(λ) =

 ∑
0≤i≤m−1

[Pm,k(x)]iλ
i

+ λm+k

2
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Where [Pm,k(x)]i denotes the ith component of Pm,k(x). Note that Rm,0(λ) =(∑
0≤i≤m−1 xiλ

i
)
+ λm+k and in fact that the transpose M(x)T of M(x) is the companion

matrix of Rm,0(λ). We can restate (2.1) as

Rm,k(λ) = Rm,k−1(λ)− [Pm,k−1(x)]m−1 Rm,0(λ)

By an easy induction Rm,k(λ) = Sm,k(λ) Rm,0(λ) where

Sm,k(λ) = λk −
∑

0≤i≤k−1

[Pm,i(x)]m−1λ
k−i−1

Lemma (2.1). The map sm : Rm → Rm which assigns to (ξ0, ξ1, . . . , ξm−1) the m-tuple
whose ith component is the ith Elementary symmetric function , σ1(ξ0, ξ1, . . . , ξm−1) is a proper
function.

The usual proof of the fundamental theorem of algebra contains an estimate which provides
an elementary proof of this lemma.

T.Iwaniec has proved the following via an estimate for ∥Pm,k∥.
Corollary (2.2). For k ≥ 0, Pm,k : Rm → Rm is a proper map.
Proof : Let x = (x0, . . . , xm−1) → ∞. Because Rm,0(λ) has the xi as coefficients, then some

of its roots and hence some root of Rm,k(λ) tends to ∞. By lemma (2.1) at least one of the
coeficcients of Rm,k(λ) tends to ∞, but these are the components of Pm,k. So Pm,k is proper.

It is immediate from the definitions that the matrixM(x)k has rows −Pm,k−m(x), . . . , −Pm,k−1(x)
and so Pm,k(x) = −x0 Pm,k−m(x)− . . .− xm−1 Pm,k−1(x)

Computing the differential directly then obtain

DPm,k(x) =
{
M(x)k

}T
− x0 DPm,k−m(x)− . . .− xm−1 DPm,k−1(x)

Hence, we see inductively that DPm,k(x) is a polynomial in M(x)T an in fact

DPm,k(x) = Sm,k

(
M(x)T

)
Since M(x)T is the companion matrix to Rm,0(λ), then Rm,0(λ) is the characteristic

polynomial of M(x)T . It follows that the determinant

(∗) det DPm,k(x) =
∏
i

Rm,0 (βi) =
∏
i,j

(βi − αj)

Where βi, i = 1, . . . , k runs over the roots of Sm,k(λ) and αj , j = 1, . . . ,m runs over the
roots of Rm,o(λ).

Proposition (2.3).

i) The degree of the complex map Qm,k : Cm → Cm is the binomial coefficient
(
m+h
k

)
ii) The degree of the real map Pm,k : Rm → Rm is the binomial coefficient

(
p+h
p

)
if m = 2p

and k = 2h + i, i = 0, 1; or m = 2p + 1 and k = 2h. If m = 2p + 1 and k = 2h + 1 then
the degree of Pm,k is 0.

Proof :

3
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i) It follows from (∗) that if for a given z, Rm,k(λ) does not have multiple roots, then Pm,k(z)

is a regular value. Since there are
(
m+h
k

)
factorizations of Rm,k(λ) as a product of two

polynomials, one of degreem and other of degree k, there are
(
m+h
k

)
possibilities forRm,0(λ),

hence the same number of preimages z′ of the regular value Pm,k(z).

ii) As in the complex case, we need to determine the number of factorizations of Rm,k(λ) but
now with real factors (as well as the sign of the differential at each preimage of a given
regular value).

We consider only the case m = 2p, k = 2h, as all other cases are similar. Let
Rm,k(λ) = (λ2p+2h+2−1)/( λ2−1) or in fact any polynomial whit distinct and nonreal
roots. A choice of Rm,0(λ) is now a choice of p of the p+h roots with positive imaginary
part (paired with their conjugates). The determinant detDPm,k will be then positive

so the degree is
(
p+h
p

)
.

3. The homotopies
Proof of theorem 2. We provide a sequence of homotopies which together connect the

map Proof : Let fm,k to the map

i ◦ Pm,k−1 : S
m−1 → Vm,1 → Vm+k−1,k

Recall fm,k is the map

fm,k(x) =


x0 x1 . . . xm−1 t

x0 x1 . . . xm−1 t
. . . t

x0 x1 . . . xm−1


First form the matrix with (j, m+ j)− entry equal to t for all 1 ≤ j ≤ k − 1, and with all

other entries equal to the corresponding entries of fm,k. It lies in Vm+k−1,k because if i is the
least index such that xi ̸= 0, then the matrix admits an upper triangular k × k submatrix with
all diagonal entries equal to xi. When t = 1 let B0 denote this matrix.

The second step is a sequence of elementary column operations using the 1s introduced in
the first step (when t = 1) to create zeros to the left of these 1s. This is done one row at a time,
starting from the (k − 1)st row and working up to the 1st row, until we arrive to a matrix of the
form (

0 I
C D

)
Where 0 is the zero (k−1)×m matrix, I the (k−1)×(k−1) identity matrix, C a 1×m matrix

whose entries are polynomials in the variables x0, x1, . . . , xm−1 and D a 1 × (k − 1) matrix of
no significance. These elementary column operations are realizable by post multiplication by
matrices each homotopic to the identity.

We claim that a C is in fact Pm,k−1(x). Let B1, . . . , Bk−1 be the sequence of matrices
obtained from B0 by clearing out the entries to the left of the 1s as described above. Then B1

is the result of clearing out row k− 1 in B0 to the left of its 1, B2 the result of clearing out row
k − 2 in B1 to the left of its 1,. . . , Bk−1 the result of clearing out row 1 in Bk−2 to the left of
its 1.

The bottom row of B0 is Ok−1Pm,0 where Ok−1 denotes k− 1 0s, In using column m− k+1
to clear out row k − 1 by column operations, rows 1, . . . , k − 2 are left unchanged, row k − 1
has only 0s except for the 1 in column m − k + 1, and row k is altered by the addition of
−xm−1 (x0, x1, . . . , xm−1) = −(Pm,0(x))m−1 (x0, x1, . . . , xm−1) in the columns k−1, . . . ,m−2−k.
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Thus row k is Ok−2Pm,1X1 is the sub row xm−1 of length 1. Repeating this process produces a
sequence of bottom rows of the form Ok−i−1Pm,iXi where Xi is some sub row of length i. At
the end we have a bottom row Pm,k−1Xk−1 establishing our claim.

The final step is a sequence of elementary row operations to clear out the sub row xk−1. Each
such operation is realizable by pre multiplication by a matrix homotopic to the identity. This
does not affect the rest of the last row.

This completes the proof of the homotopy commutativity of the diagram in theorem 2.
For theorem 1 we note that it is an immediate consequence of theorem 2 and proposition

(2.3, ii).
4. Applications
1. The Whitney invariant of ∅̃m. The adjoint of a nonsingular bilinear map Fm,m :

Rm × Rm → R2m−1 defines a map F
′
m,m : Sm−1 → V2m−1,m whose homotopy class is the Smale

invariant of the symmetric immersion F̃m : Sm−1 → R2m−1 induced by Fm,m on the diagonal
sphere. For Fm,m = ∅m,m Lam’s result on the homotopy class [fm,m] and the equivalence of
Whitney and Smale invariants [3, §3] provide on some level an explanation of Brown’s theorem

for ∅̃m. Our claim was to provide an explicit regular homotopy from ∅̃m to an immersion ψ̃m in
general position whose double point set would provide a visible proof of Brown’s theorem for ψ̃m.
As a start, there exist, by virtue of the cyclicity of πm−1 (V2m−1,m) a homotopy F̃m ∼ i ◦Hm,m

for some map Hm,m : Sm−1 → Rm ∖ {0} whose degree satisfies
[
F

′
m,m

]
= (deg Fm,m) em−1

and via adjointness a regular homotopy F̃m ∼ H̃m where ψ̃m(x) = ( xm−1Hm,m(x), x
′
). In fact

theorem 2 provides an explicit homotopy fm,m ∼ i ◦ Pm,m−1 and hence a regular homotopy

from ∅̃m to the ψ̃m defined by Hm,m= Pm,m−1. Unfortunately determining the double point

set of ψ̃m and deciding if it is in general position are not easily resolved questions (m = 2, 3 are
exceptional cases), suggesting a further search for a more suitable representative in the regular
homotopy class of ∅̃m.

Here is a family of immersions whose double point set is computable. Start with the
nth power map fn(z) = zn on S1 for n ̸= 0. In real coordinates (a, b) this defines two
polynomials (Re(zn), Im(zn) = ( pn(a, b), qn(a, b)) satisfying pn(a, b) = pn(a,−b) and
qn(a, b) = −qn(a,−b)
Secondly define Gm,n : Sm−1 → Rm ∖ {0} by

Gm,n(x) = (x
′′
, pn (xm−2., xm−1) , pn (xm−2, xm−1) , qn (xm−2, xm−1))

where x′′ is obtained from x by omitting the last two components. Since Gm,n is essentially

the (m− 2)nd suspension of G2,n, degGm,n = n. Observe that Gm,n

(
x

′′
, xm−2, xm−1

)
=

−Gm,n

(
x

′′
, xm−2,−xm−1

)
if and only if x

′′
= 0 and pn (xm−2., xm−1) = 0.

Finally define G̃m,n : Sm−1 → Rm−2 to be the map

G̃m,n(x) =
(
xm−1 Gm,n(x), x

′
)
∈ R2m−1 = Rm × Rm−1

We omit the verification that G̃m,n is an immersion, i.e. that rank G̃m,n = m − 1 at all

x ∈ Sm−1. From the above discussion the Whitney invariant of G̃m,n equals the degree of

Gm,n mod 2 i.e. n, mod 2. From (4.1) and (4.2) we have that G̃m,n(x) is a double point if and

only if x
′′
= 0 and Gm,n

(
x

′
, xm−1

)
= Gm,n

(
x

′
, −xm−1

)
. The later condition holds exactly

when pn (xm−2, xm−1) = 0. In terms of the rotation angle θ, this means cos(nθ) = 0 and hence
(xm−2, xm−1) is an n

th root of the imaginary number i or −i. These 2n points provide n pairs
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of double point preimages of G̃m,n, each pair consisting of two points with the same “real” parts.

One can also check that G̃m,n is in general position.

Thus G̃m,n is regularly homotopic to ∅̃m if and only if n is even and m is not of the form 2p,
or n is odd and m = 2p for some p ≥ 1. Call an immersion of Sn in R2n symmetric if there is
a representative of its regular homotopy class which factor through RPn. We can restate this
discussion as follows.

Proposition (4.1). G̃m,n is a symmetric immersion if and only if n is even when m is not
of the form 2p or n is odd when m = 2p for some p ≥ 1.

Remarks:

1) In a sense our theorem 2 replaces Lam’s essentially homological determination of [fm,m]
thereby supplying a polynomial representative Hm,m = Pm,m−1 and an explicit homotopy
from fm,m to Pm,m−1.

2) The Whitney and Smale invariants of ∅̃m are not all obvious from the definitions, but both

are for G̃m,n.

3) Our computation of degPm,m−1 is independent of SW class considerations which seem
closely tied to previous accounts of Brown’s theorem.

2. Brown’s Theorem [1], [2], [5]. The following is a modification of the Smith’s proof [5]
Lemma (4.2). If n is odd, the normal bundles of all symmetric immersions are isomorphic.

If n is even, the Euler numbers of all symmetric immersions are equal mod 4.
Proof. For any symmetric immersions f1, f2 : Sn → Rn we can find classifying maps for

their normal bundles of the form

Sn → RPn vi→ BO(n) i = 1, 2

which also satisfy

1) v1 is constant in a neighborhood of a closed disk Dn; and

2) v1 agrees with v2 in a neighborhood of RPn/Dn. Then v2 is homotopic to the composite

RPn p→ RPn
∨
S
n v1

∨
h→ BO(n)

where p is the map that pinches the boundary of Dn to a point and h is the classifying map
of some stably trivial bundle over Sn. But then this produces a classifying map for the normal
bundle of f2 of the form

Sn p→ Sn
∨
S
n∨

S
n v1π

∨
h
∨

h→ BO(n)

For n even, then the Euler numbers satisfy the equation E (f2)= E (f1)+2E(h). The assertion
follows since E(h) I even. For n odd the map h

∨
h : Sn

∨
Sn −→ BO(n) is nullhomotopic

since [h] ∈ ker{πn(BO(n)) −→ πn(BO(n+1))} ∼= 0 or Z/2Z according as n ∈ {1, 3, 7} or not.
This completes the proof.

Corollary (4.3). Let n ̸= 1, 3, 7. Then all symmetric immersions of Sn in R2n have the
same Whitney invariant mod 2.

Proof. This follows from the fact that the Whitney invariant is characterized by the normal
bundle [2], [10].

Theorem (4.4) [2]. The Whitney invariant of a symmetric immersion of Sn in R2n is
1 mod 2 if n = 2p − 1 and 0 mod 2 otherwise.

Proof. If n ̸= 2p − 1 (resp. n = 2p − 1) then by theorem 1 the Whitney invariant of the
symmetric immersion ∅n+1 is 0 (resp. 1) mod 2, so the corollary above gives the result for all
n, except n = 1, 3, 7. For these cases we refer the reader to the previous proofs.
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