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Abstract. In this paper, considering a 1-dimensional physical system and Weierstrass’s
polynomial approximation theorem, a polynomial version of Hamilton’s principle is constructed,
in which, instead of considering numerous continuous curves that connect two fixed points,
polynomials are considered representative of these curves. As a result of the mathematical
development, a set of algebraic equations (Euler-Lagrange) are discovered, whose solutions do
not correspond directly to the trajectory of the considered particle, but to the independent
coefficients of a polynomial that represents this trajectory.
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Resumen. A partir de un sistema f́ısico unidimensional y se utiliza el teorema de aproximación
polinomial de Weierstrass para construir una versión polinomial del Principio de Hamilton, en la
cual en lugar de analizar las numerosas curvas continuas conectando dos puntos fijos, se emplean
polinomios representando a dichas curvas. Como resultado de este desarrollo matemático, se
obtiene un conjunto de ecuaciones algebraicas (Euler-Lagrange) cuyas soluciones corresponden
directamente a los coeficientes independientes de un polinomio que representa a la trayectoria
de la part́ıcula bajo estudio.
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1. Introduction

A simplified version of the central aspect in Hamilton’s formulation of
Classical Mechanics [1–4] could be obtained by substituting mathematical
concepts and tools such as: functional, extremal of a functional, differential
equation, etc. by the most basic concepts and tools of: real functions,
polynomials, algebraic equation etc., while preserving the objective
of this formulation. This simplification is achieved by implementing
Weierstrass’s polynomial approximation theorem5; in other words, the
explicit incorporation of polynomials as representatives of the curves
considered in the context of Hamilton’s Principle makes it possible to
“replace” the variational treatment by a treatment (less effective but
simplified) in terms of real functions and vectors, as we will see in following
sections.
On the other hand, an approach based on Weierstrass’s theorem

was used earlier in the construction of some quantum propagators [7].
As part of the solution to the problem considered here, we obtain a
set of algebraic equations whose solutions do not correspond directly
to the trajectory traversed by the considered particle (solution of the
Euler-Lagrange equation), but to the values of the independent coefficients
of a representative polynomial of this trajectory.

2. The polynomials

Let’s restrict ourselves to the simplest case with only one spatial coordinate,
z. The considered polynomials have the following form,

Z(t) =
n∑

k=0

γkF (t)k, (1)

where {γk} represents the set with n+1 numerical coefficients initially free;
F (t) corresponds to the value of a function F and t symbolizes the time
variable.
5 The possibility of finding a polynomial approximation of a continuous function, defined in a finite interval, with
any prescribed degree of accuracy was first demonstrated by Weierstrass [5, 6].
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Consistent with the approach considered, of matching polynomials with
curves, all passing through the same extreme points P0 and P , being,

P0 = (z0, T0), P = (z, T ), (2)

fixed in 2-dimensional spacetime, the polynomials in (1) should be required
to check,

Z(T0) = z0, Z(T ) = z. (3)

From the independent requirements in (3) it follows that two coefficients
γk, in expression (1), cannot be kept free; we choose γ0 and γ1 as these
coefficients.
From (1) and (3) we can write the following expressions,

Z(T0) = γ0 +
n∑

k=1

γkF (T0)
k = z0, (4)

Z(T ) = γ0 + γ1F (T ) +
n∑

k=2

γkF (T )k = z. (5)

To determine γ0 and γ1 from (4) and (5) there is no need to define an F (t)
specific; however, for simplicity, we will fix their values at the instants T0

and T , in particular, we will assume that,

F (T0) = 0, F (T ) = 1. (6)

So, from (6), (5) and (4) we have,

γ0 = z0, γ1 = z − z0 −
n∑

k=2

γk, (7)

where the independent coefficients in (1) correspond to the values
{2, 3, ..., n} of the index k. For convenience, we will identify the set of
free coefficients (or independent) by a vector γ⃗ = (γ2, ..., γn), with n − 1
real components; thus, we write (1) highlighting this identification,

Z(γ⃗, t) = z0 + (z − z0)F (t) +
n∑

k=2

γk

(
F (t)k − F (t)

)
. (8)
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3. Polynomial version of Hamilton’s principle

The version we started to develop corresponds to a polynomial approach
for Hamilton’s principle based on the (polynomial approximation) theorem
of Weierstrass. We deduce a set of algebraic equations “equivalent” to
the Euler-Lagrange equation in the sense that the solution of this set
determines all the independent numerical coefficients of a polynomial that
represents the path physically traversed by the considered particle (for a
given order n of these polynomials). To derive these equations, we followed
the usual procedure [2, 3], but making the necessary adaptations.
In the z−t plane, with z being the third spatial coordinate and t the time

variable, we represent with the letter q a reference curve (which we will
assume to be the extremal of the action) that connects two fixed points,

P0 =
(
T0, q(T0)

)
, P =

(
T, q(T )

)
. (9)

Under the context under consideration, the curve q corresponds to several
polynomials6 with the form (1) and with coefficients that assume specific
values. Let us consider one of these polynomials, whose independent
coefficients are gathered in a vector γ⃗; that is, we have the correspondence,

γ⃗ ←→ q. (10)

In a similar way, we consider an arbitrary curve η, “neighbor” to q, which
connects the same extreme points P0 and P , and which has an associated
polynomial with independent coefficients gathered in a vector ξ⃗; that is,
we have the correspondence,

ξ⃗ ←→ η. (11)

To mathematically characterize the neighborhood between the curves η and
q, and to represent the fact that η is arbitrary, the following identification
must be correct,

ξ⃗ = γ⃗ + hσ⃗, (12)

where h is a parameter that can take on a small value and σ⃗ is an arbitrary
vector.
6 Many polynomials can represent (approximately) the same curve.
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The value of the function7 (action) S for the polynomial corresponding
to the curve q would write

S(γ⃗) =

∫ T

T0

dτL(γ⃗, τ). (13)

The directional derivative of the function (action) S along the direction of
the arbitrary vector σ⃗ is defined here by Dσ⃗S(γ⃗), by the expression,

Dσ⃗S(γ⃗) = lim
h→0

(
S(γ⃗ + hσ⃗)− S(γ⃗)

h

)
. (14)

From (13) we can write,

S(γ⃗ + hσ⃗)− S(γ⃗) =

∫ T

T0

dτ

(
L(γ⃗ + hσ⃗, τ)− L(γ⃗, τ)

)
. (15)

Then we develop the function L(γ⃗ + hσ⃗, τ), in the integrand of (15), in a
Taylor expansion around γ⃗ until the first order term in h, that is,

L(γ⃗ + hσ⃗, τ)− L(γ⃗, τ) = hσ⃗.
∂L
∂γ⃗

+O(h2), (16)

where ∂L/∂γ⃗ is a gradient with respect to the independent variables γk.
Note that in (16) we do not have a term of the type,

h ˙⃗σ.

(
∂L
∂ ˙⃗γ

)
,

because the vectors γ⃗ do not depend on time, which is a characteristic that
we will use later. Then, we can write,

S(γ⃗ + hσ⃗)− S(γ⃗)

h
=

∫ T

T0

dτ

(
σ⃗.
∂L
∂γ⃗

+O(h)

)
. (17)

Thus, from (14) and (17), we find the following expression,

Dσ⃗S(γ⃗) =

∫ T

T0

dτ σ⃗.
∂L
∂γ⃗

. (18)

7 Representing the curves by polynomials, that is, by the vectors defined from the coefficients, the “action”
functional becomes a dependent function of “n− 1” independent variables.
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Then, according to the Extremal Principle, the derivative Dσ⃗S(γ⃗) must be
zero for every vector σ⃗, which leads to writing,

∂L
∂γ⃗

= 0⃗ =⇒ ∂L
∂γk

= 0 , k ∈ {2, ..., n}. (19)

Expression (19) represents a set of n − 1 algebraic equations, with
n arbitrary, but fixed, which we will call “Euler-Lagrange algebraic
equations”. By solving these equations, the corresponding independent
coefficients can be found to a polynomial (among many), formally given
in (8), because so far F (t) is not defined, which represents the trajectory
covered by the considered physical system.

4. Lagrangian polynomial for a free particle

Let us consider the specific case of a particle of mass m in a 1-dimensional
free motion along a spatial direction identified here with the z coordinate
direction of a given reference frame. The trajectory of this particle is
represented, consistent with Weierstrass’ theorem, by a time-dependent
polynomial, Z(t), with the form (8), and the corresponding Lagrangian
function is defined by the expression,

L(Ż) =
1

2
mŻ2, (20)

where Ż represents the time derivative of Z. Using (8), we rewrite (20) as
follows,

L(γ⃗, t) =
m

2

(
(z − z0) +

n∑
k=2

γk

(
kF (t)k−1 − 1

))
×

×

(
(z − z0) +

n∑
l=2

γl

(
lF (t)l−1 − 1

))
Ḟ (t)2. (21)

After having identified that in expression (21), when developed explicitly,
there are two simple sums with the same value, we arrive at the expression,

L(γ⃗, t) =
m

2

n∑
k=2

n∑
l=2

γkγl

(
klF (t)k+l−2 − 2kF (t)k−1 + 1

)
Ḟ (t)

2
+

+ m(z − z0)
n∑

k=2

γk

(
kF (t)k−1 − 1

)
Ḟ (t)2 +

m

2
(z − z0)

2Ḟ (t)
2
. (22)
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Observing (22) it can be observed that if the function F , which until now
is free, is assigned values defined by the expression,

F (t) = (t− T0)/(T − T0), (23)

which checks conditions (6), then the last term in (22) corresponds directly
to the kinetic energy of the free particle, that is, to the standard Lagrangian
of this particle. Note that expression (22) itself corresponds to a polynomial
version of a non-standard Lagrangian for the free particle.
Above an interesting aspect of this polynomial approximation and the

definition of F is revealed. It can be observed that the coefficients for
which the first two terms in (22) cancel out reduce this Lagrangian to
the standard; therefore, these coefficients directly provide information on
a polynomial that can be associated with the particle’s trajectory. So, to
determine the values of these coefficients we do,

n∑
k=2

n∑
l=2

γkγl

(
klF (t)k+l−2−2kF (t)k−1+1

)
+ 2(z−z0)

n∑
k=2

γk

(
kF (t)k−1−1

)
= 0,

(24)
Making γk = 0, for 2 ≤ k ≤ n, with n arbitrary, we have that each one
of the terms in (24) cancels, separately, so that (24) is identically verified.
For these values we have, from (7), that,

γ0 = z0, γ1 = z − z0, (25)

Thus, expression (8), considering (23), is written as,

Z(t) = γ0 + γ1

(
t− T0

T − T0

)
= z0 + (z − z0)

(
t− T0

T − T0

)
(26)

from where we have,

Z(t)− z0 =

(
z − z0
T − T0

)
(t− T0). (27)

which clearly represents a straight line, in the z− t plane, passing through
the points (z0, T0) and (z, T ). Therefore, the set of coefficients γ0 = z0,
γ1 = z−z0 and γk = 0, with 2 ≤ k ≤ n, define a polynomial representative
of the rectilinear trajectory of the 1-dimensional free particle.
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Next, we paid attention to the following mathematical facts: (i)
According to the Hamilton’s principle, we must consider a multitude of
curves (here polynomials) continuously differentiable that join two fixed
space-time points; (ii) the last term in (22) is independent of polynomials.
Based on these comments, we will take provisionally as a “polynomial
Lagrangian” for the free particle 1-dimensional no longer (22), but the one
that results from excluding its last term; or be,

L(γ⃗, t) =
m

2(T − T0)2

n∑
k=2

n∑
l=2

γkγl

(
kl

(
t− T0

T − T0

)k+l−2
− 2k

(
t− T0

T − T0

)k−1
+ 1

)
+

+
m(z − z0)

(T − T0)2

n∑
k=2

γk

(
k

(
t− T0

T − T0

)k−1
− 1

)
. (28)

where, to generate the polynomials corresponding to the different curves
(including the classical trajectory) considered in Hamilton’s principle, we
must take the coefficients γk as real variables that can assume arbitrary
values.

5. Euler-Lagrange algebraic equations for the 1-dimensional free particle

So far, the following characteristics can be noted in the previous results:
(I) Equations (19) are homogeneous.
(II) The coefficients γk are independent of time, and,
(III) The polynomials considered, with the structure (8), depend on time
through the choice made in (23), that is, F (t) = (t− T0)/(T − T0).
From the characteristics indicated above, we can conclude that the

Lagrangians in the “Euler-Lagrange algebraic equations” should not
contain linear terms in the coefficients, as these would generate, from
(28), non-homogeneous equations; which, in turn, would imply that the
coefficients that solve these equations would necessarily be time-dependent,
contradicting one of the characteristics inherent to the approximation
considered here. Therefore, we must reduce, once again, the Lagrangian in
(28) to the following “Effective Lagrangian”,

L(γ⃗, t) = m

2(T − T0)2

n∑
k=2

n∑
l=2

γkγl

(
kl

(
t− T0

T − T0

)k+l−2
− 2k

(
t− T0

T − T0

)k−1
+ 1

)
(29)
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which is adequate to the general context of the considered polynomial
approximation and to the algebraic equations found.

Next, just for simplicity, let’s fix the degree of the polynomials taking
n = 3. In the general case, with arbitrary n, we would have to explicitly
write (n− 1)2 terms when developing the double sums in (29). In the case
considered, the Lagrangian (29) is written explicitly as follows,

L(γ⃗, t) = m

2
Ḟ 2

[(
4F 2 − 4F + 1

)
γ2
2 +

(
9F 4 − 6F 2 + 1

)
γ2
3

]
+

+
m

2
Ḟ 2

[
2

(
6F 3 − 3F 2 − 2F + 1

)
γ2γ3

]
. (30)

where the symbol F is given by expression (23). Next, we must calculate
the derivatives. We have,

∂L
∂γ

2

= mḞ 2
(
4F 2 − 4F + 1

)
γ

2
+ mḞ 2

(
6F 3 − 3F 2 − 2F + 1

)
γ

3
,

and considering (19) we have,

=⇒
(
4F 2 − 4F + 1

)
γ

2
+
(
6F 3 − 3F 2 − 2F + 1

)
γ

3
= 0, (31)

And,

∂L
∂γ

3

= mḞ 2
(
9F 4 − 6F 2 + 1

)
γ

3
+ mḞ 2

(
6F 3 − 3F 2 − 2F + 1

)
γ

2
,

and considering (19) we write,

=⇒
(
6F 3 − 3F 2 − 2F + 1

)
γ

2
+
(
9F 4 − 6F 2 + 1

)
γ

3
= 0, (32)

Equations (31) and (32) can be rewritten as follows,

(2F − 1)2γ
2
+ (2F − 1)(3F 2 − 1)γ

3
= 0, (33)

(2F − 1)(3F 2 − 1)γ
2
+ (3F 2 − 1)2γ

3
= 0. (34)

whence it is clear that (34) can be obtained from (33) by multiplying
it by (3F 2 − 1)/(2F − 1); therefore, we only have one independent
equation for two unknowns, so there are infinitely many solutions, which
is generally expected due to the mathematical fact that we can assign
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many polynomials to a specific curve between two given points. We must
remember the complementary requirement here given in item II above.
This is fundamental, because if we ignore it, we could have coefficients in
equations (33) and (34) that would depend on time through F ; for example,

γ
2
= − (3F 2 − 1)

(2F − 1)
γ

3
,

Thus, the only admissible solution for (33) and (34) is to take: γ
2
= γ

3
= 0.

But, we have already seen, in section 4, that these values correspond,
precisely, to a polynomial that represents a rectilinear trajectory between
the points P and P0, as seen in (27).

6. Conclusion

(I) The possibility of using polynomials, as an approximation for curves,
was identified in the context of Hamilton’s variational principle, appealing
to the Weierstrass approximation theorem. (II) The incorporation of this
polynomial approximation in the context of Hamilton’s principle made
it possible to find a set of algebraic equations whose solution directly
provides the independent coefficients of a polynomial that represents the
corresponding physical trajectory. (III) The polynomial approximation
that we have presented carries a significant limitation: it is not possible
to represent all the continuously differentiable curves that join the given
extreme points, as required by Hamilton’s Principle, through polynomials
with the form (8), with fixed degree. (IV ) For the sake of internal
mathematical consistency, the requirement arose that the Lagrangians
to be considered in the algebraic equations must not include first-order
terms in the coefficients. (V ) We consider the case of Euler-Lagrange
algebraic equations for a 1-dimensional free particle and verify that
their solutions correspond to a correct polynomial representation for
its trajectory. (V I) Our approach is structurally different from other
polynomial approximations that can be found in the literature [8, 9].
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