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Abstract. Dealing with uncertainty about the true data generating process requires a
differentiated perspective of the distributions in hypothesis testing. In particular, the
realizations, or the observed data, generated by interactions that are naturally ordered in time,
posits a need for a differentiated analysis with respect to the standard statistics available for
hypothesis testing. The Functional Central Limit Theorem provides a framework that enables
the researcher to build a statistic that fits his data and hypothesis at hand. In this paper I show
some of the necessary conditions under which the popular t− statistic properly condenses the
information of the underlying distribution as well as the additional tools available when then t
distribution is not suitable for hypothesis testing.
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Resumen. Tratar con la incertidumbre sobre el verdadero proceso generador de datos requiere
una perspectiva diferenciada con respecto a las distribuciones usadas en la pruebas de hipótesis.
En particular, las realizaciones, o los datos observados, producto de las interacciones que
están naturalmente ordenadas en el tiempo, plantean la necesidad de un análisis diferenciado
con respecto a los estad́ısticos de prueba estándar disponibles para la prueba de hipótesis.
El Teorema del Ĺımite Central Funcional proporciona un marco que permite al investigador
construir un estad́ıstico que se ajuste a sus datos y a la hipótesis en cuestión. En este documento,
muestro algunas de las condiciones necesarias bajo las cuales el popular estad́ıstico−t condensa
adecuadamente la información de la distribución subyacente, aśı como las herramientas
adicionales disponibles cuando la distribución t no es adecuada para la prueba de hipótesis.
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1. Introduction
The use of limiting distributions in order to reject hypotheses is the main instrument for empirical
scientific research. In most of the empirical work, the researcher relies on the Law of Large
Numbers and the Central Limit Theorem as these, jointly with the Neyman-Pearson principle,
provide a clear decision rule in hypothesis testing.

The t statistic for linear models with additive and independent stochastic unobserved
disturbances is among the most exploited. Whenever the true model is linear and the estimators
converge in probability to the population parameters, the usual t − statistic follows a t
distribution and converges in distribution to the normal. In the literature of food science
for instance, [1] describe the contributions of oil constituents to overall antioxidant capacity
of walnut oil using linear models and [2] in their medical research, identify associations between
an obesity life style risk index, built on 6 obesogenic lifestyle risk factors, and an obesogenic
index (BMI) estimating linear models with data on 17,040 adults. In the world of the research in
medicine, [3] compare the means on the types of primary tumors and colorectal liver metastases
characteristics, between patients with a desmoplastic histological growth pattern (DHGP) and
patients without a DHGP using the Student’s t− test.

Before relying on the t− statistic for hypothesis testing, [4] analyze the dynamic dependence
structure of their data in order to draw conclusions on the relationship between water supply
and bioenergy production. Certain data which is naturally ordered in time, such as the quarterly
Gross Domestic Product (GDP), may exhibit patterns of dependence that deserve a different
analysis than cross-sectional and spatial data. Variables widely used in social sciences such
as GDP, stock prices, inflation, and exchange rates are typical examples of random variables
that have a sequential interpretation. The underlying data generating process of the GDP is
plausibly conditional on both the unobserved state of nature and the known sequential order of
time. Thus, analyzing the trajectory of an stochastic process resembling the data at hand (the
data on GDP in the research of [4]), provide additional knowledge for hypothesis testing. Given
the advantages and practical usefulness of the t− statistic and asymptotic theory, in this paper
I describe the necessary conditions for proper hypothesis testing in the context of linear models
as well as the asymptotic tools available for hypothesis testing that are specific to information
with time-series properties. Thus, this paper may help the reader in the construction of a test in
applied work when the usual normal or t distributions are not suitable as a reference for decision
rules.

This document is divided into five sections including the introduction. In section two, I
review the methodology along with the literature on test statistics based on asymptotic theory.
In sections three and four, I show applications and a discussion. Finally, in section five, I
conclude.

2. Methodology
Linear models are widely used in empirical research and the OLS estimator has been intensely
exploited. Nobel Price Richard Thaler run a linear regression of current earnings changes over
current forecast bias in earnings and find statistical evidence of optimism and overreaction in
financial analysts’ forecasts [5]. Following [6], [7] use a two-stage least squares (2SLS) regression
and find statistical evidence of a relationship between education and formal employment.

[8] estimate a set of dynamic models in an attempt to shed light on the relationships between
aggregate Consumers’ Expenditure, Non-durables and Disposable Income. Ten years later, [9]
showed that the usual t tests are misleading when the researcher is dealing with a data generating
process whose first and second moments are not constant in time or whose covariance with respect
to a fixed lagged is not constant. Nowadays, we use the proper asymptotic distributions and
critical values for unit root and cointegration tests as developed in [10] and [11] and is common
knowledge among those dealing with time-series that for two series xt ∼ I(dx) and yt ∼ I(dy),
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the combination zt = bxt + cyt ∼ I(max(dx, dy)) as noted by Granger in 1981 [12].
The first popular tests for unit roots were developed in [13] and [14]. Recent extensions

in [15], [16] and [17] are suitable to test for explosivity.

2.1. Linear Models
Consider the following model:

yi = µ+ θxi + ϵi (1)

for i = 1, 2, 3..., n, n ∈ N, and ϵi ∼ n.i.i.d(0, σ2). Also, yi and xi are observable variables with
xi exogenous, and (µ, θ) are population parameters. The log-likelihood function is

Ln =
n∑

i=1

logf(yi,θ) = −n
2
log2π − n

2
logσ2 − 1

2σ2

n∑
i=1

(yi − µ− θxi)
2 (2)

where θ is the vector of parameters and f(·, ·) is the density of a normal distribution with mean
µ+θxi and variance σ2. From the first order conditions the maximum likelihood (ML) estimator
for θ is

θ̂ =
ˆCov(xi, yi)

σ̂2x
(3)

where ˆCov(·, ·) is the sample covariance function and σ̂x is the sample variance function of xi.

θ̂ is asymptotically normal for xiϵi independent. That is

√
n(θ̂ − θ)√
σ2E(x2i )

→d N (0, 1) (4)

The above follows mainly from the Lindeberg-Levy Central Limit Theorem (CLT) which is
pivotal to hypothesis testing.

Theorem (Linderberg-Levy CLT):
Take a sequence of i.i.d. random scalars w1, w2, ..., wn with finite and constant expected values
and variances E(wi) = µw,V(wi) = σ2w, σ

2
w ̸= 0, and the statistic w̄n = 1

n

∑n
i=1wi, then

√
n(w̄n − µw) →d N(0, σ2w)

Intuitively, as n becomes larger (the sample size increases),
√
n(w̄n − µw) approximates the

normal, and this is true for any initial distribution of wi. To grasp the idea of a limiting
distribution, consider the sequence Z1, Z2, ..., Zn with distributions F1, F2, ..., Fn as well as
the variable Z with distribution F . A sequence {Zi}ni=1 converges in distribution to Z if
limn→∞ |Fn(z)−F (z)| = 0 for any z and we write Zn →d Z. Take the variable Z with distribution

F (z) = 1 −e−z
and the sequence Zn = (0, n], n > 0 with distributions Fn(z) = 1 −

[
1− z

n

]n
.

Notice that

for n = 1: Z1 = (0, 1] and F1(z) = 1−
[
1− z

1

]1
for n = 2: Z2 = (0, 2] and F2(z) = 1−

[
1− z

2

]2
for n = 3: Z3 = (0, 3] and F3(z) = 1−

[
1− z

3

]3
for n→ ∞: limn→∞ zn = (0,∞] and limn→∞ Fn(z) = 1−e−z

that is, Zn →d Z.
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For equation 1 and the estimator expressed in 3, under the null hypothesis that θ = 0, the
t− statistic is of the form:

t =
θ̂

σ̂θ
−→d N(0, 1) (5)

For a well-specified linear model, the ML estimator is the same as the ordinary least squares
estimator. Whenever the true distribution is of the exponential family, the ML estimator is
consistent even when the the assumed distribution is not normal. The decision rule is then to
reject the null hypothesis at the specified significance level, if the calculated t−statistic is larger
than the critical value. Notice that an estimator is a random variable itself. Hypothesis testing
corresponds to taking a decision on whether the data at hand are drawings from a distribution
with parameter θ0 or drawings from a distribution with parameter θ1. Thus, the researcher is
always subject to errors: choosing θ1 when θ0 is true (type I error), choosing θ0 when θ1 is true
(type II error). As the true parameters are not observable, one is always uncertain about which
error is making. In this circumstances, the best we can do is to take decisions on the probabilities
of choosing wrongly by setting a threshold on one of them. The researcher would prefer to have
the largest power, or the highest probability of rejecting θ0 when θ0 is false, while he would like
the probabilities of type I and type II errors to be at their lowest. Unfortunately, that type of
optimization is not feasible so that usually we follow the Neyman - Pearson principle: we fix a
value for one of the probabilities, usually the type I error probability or significance level, and
then we minimize the other one.

→ Null hypothesis → Alternative hypothesis → Critical Value 99K Expected Value

Figure 1: Alternative Decisions in Hypothesis Testing Under Normality

2.2. Dynamic Linear Models
In many contexts, expressing the dynamics explicitly makes sense. Take, for example, the
number of originating and destinating passangers at Schipol Airport. The time-series figure
2 suggests that the first moment of the series depends on the order of time. Panel a) shows
the series of Google searches for the term “Schipol Airport” made from the Netherlands and
panel b) shows the series for Google searches from the U.S. The dependence structure suggests
that transit at the airport is related in time to Google searches and that it is worthwhile to
statistically test this hypothesis.
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a) b)

Figure 2: Originating and Destinating Passengers at Schipol Airport

Figure 3 shows the quarterly series of the U.S. Gross Domestic Product (GDP): panel a)
shows the series in levels and panel b) shows the first differences of the GDP scaled by the first
lag of the GDP. While panel a) suggests that the first moment of the GDP is not constant, panel
b) suggest that the first differences of the same information exhibit a constant expectation. In
addition, both figures 2 and 3 suggest that the current values of the series are related to their
past values. This suggestion is testable but there are not mechanics or physical descriptions of
the social interactions that can bring a clear decision rule to accept or reject this hypothesis.

a) GDP (nominal)

b) GDP quarterly growth

Figure 3: U.S. Gross Domestic Product

Consider the data generating process yt = ρyt−1 + ut, E(ut) = 0 and V(ut) = σ2 for
t = 1, 2, 3..., T . If the true parameter ρ equals one, that is yt = yt−1+ut and we use the estimator
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in expression 3 ρ̂ =

∑T
t=1 yt−1yt∑T
t=1 y

2
t−1

for hypothesis testing, the estimator ρ̂ is not consistent for ρ and

the corresponding t−statistic t = ρ̂

σ̂ρ
does not have a t distribution and its limiting distribution

is not normal. Thus, the usual critical values do not convey relevant information for hypothesis
testing. So far, we have two relevant unobserved worlds:

(i) yt = ϕ+ ρyt−1 + εt and ρ < 1 (stationary series)

(ii) yt = ϕ+ ρyt−1 + εt and ρ = 1 (non stationary series)

When ρ = 1, the deviation of ρ̂ from its true value T (ρ̂ − 1) has a limiting distribution that is
skewed to the left, and in 2/3 of generated samples, the usual estimator in expression 3 will take
values such that (ρ̂− 1) < 0.

2.3. The Functional Central Limit Theorem
Consider the process ∆yt = δ0 + δ1t+ (ρ− 1)yt−1 + ut. When ρ = 1, the normalizing factor of
a test based directly on the OLS estimator of ρ or based on (ρ − 1), is n rather than

√
n and

standard asymptotic theory does not apply to the statistics. Theorems that involve taking limits
in a function space provide the basis for a generalization of the the Central Limit Theorem,
which provides a useful asymptotic theory for hypothesis testing in dynamic models. That
generalization is the Functional Central Limit Theorem (FCLT) which plays a crucial role in
the asymptotic theory of integrated processes.

We can re-write the non stationary process yt = yt−1+εt, εt ∼ iid N(0, 1), y0 = 0, t = 1, ..., T .
in the form

yt = ε1 + ε2 + · · ·+ εt
yt ∼ N(0, t)

To understand the idea behind the FCLT, write the change between t and t− 1, εt = yt − yt−1

as the sum of distinct sub-periods, for instance εt = ϵ1t + ϵ2t, ϵit ∼ iid N(0, 12), where
ϵ1t = yt− 1

2
− yt−1 and ϵ2t = yt − yt− 1

2
; thus yt − yt−1 = ϵ1t + ϵ2t ∼ iid N(0, 1). Writing εt

in terms of T sub-periods we have

yt − yt−1 = ϵ1t + ϵ2t + · · ·+ ϵTt, ϵit ∼ iid N

(
0,

1

T

)
Scaling

∑T
t=1 ϵt by

√
T converges weakly to the standard Wiener process as T → ∞, under

some regularity conditions, that is

T−1/2
T∑
t=1

ϵt −→d σW (1)

where W (·) is a standard Brownian motion: a continuous-time process, associating each date
t ∈ [0, 1] with the scalar W (t) such that

(i) W (0) = 0

(ii) For any dates 0 ≤ t1 < t2 < · · · < tk ≤ 1, the changes [W (t2) − W (t1)], [W (t3) −
W (t2)],...,[W (tk)−W (tk−1)] are independent multivariate Gaussian with [W (s)−W (t)] ∼
N(0, s− t)

(iii) For any given realization, W (t) is continuous in t with probability 1.
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Using the continuous mapping theorem, we can also know many other limiting distributions.
One of the most important is the limiting distribution of the OLS estimator ρ̂ for yt = ρyt−1+et
when ρ = 1

T (ρ̂− 1) −→d

∫ 1
0 W (r)dW (r)∫ 1
0 W (r)2dr

(6)

See [15]. This is known as the Dickey-Fuller distribution because [13] and [18] made the tables
of this distribution before the publication of the limiting distribution with Wiener processes.

2.4. Testing for Unit Roots
To carry out statistical inference on the parameters of the process yt = µ + ρyt−1 + et, we
estimate ∆yt = µ + γyt−1 + ϵt and test H0 : γ = ρ − 1 = 0 v.s. γ < 0. As we do not know the
value of the true parameter ρ nor the true data generating process, we perform the hypothesis
testing on several specifications (see [9])

i) ∆yt = γyt−1 + ut
ii) ∆yt = δ0 + γyt−1 + ut
iii) ∆yt = δ0 + δ1t+ γyt−1 + ut
iv) ∆yt = δ0 + δ1t+ δ2t

2 + γyt−1 + ut

(7)

After estimating the value of γ one uses the critical values as presented in [13] and [18], obtained
from numerical methods, and compare them with a statistic of the form of the t− statistic.

2.5. Testing for Explosive Behavior
We find extensions of the Dickey-Fuller test in [15–17] that allow us to test for explosivity. The
specification in a test of explosivity differs from those of a unit root in that we consider window
sizes. In the following equation

∆yt = µrw + γrwyt−1 +

k∑
j=1

ψj
rw∆yt−j + ϵt (8)

the term rw = r2 − r1 specifies the start and ending points of a subsample, where r2 and r1 are
expressed as fractions of T . The parameters to be estimated are µrw , γrw and ψj

rw, j = 1, . . . , k.
The term ϵ ∼ N(0, σ2rw) is the unobserved random shock. Notice that the usual ADF statistic
is ADF r2

r1 = ˆγr1,r2/se( ˆγr1,r2) specifying r1 = 0 and r2 = 1 or the complete sample. The limiting

distribucion of ADF 1
0 under the null hypothesis is

∫ 1
0 WdW[∫ 1
0 W

2
]1/2 . We can use the mentioned

setup for hypothesis testing by following these two steps: first, calculate ADF 1
0 and define your

hypothesis as H0 : γrw = 0 (unit root) and H1 : γrw > 0 (explosiveness). Second, compare your
ADF 1

0 with the right-tail critical value of its limiting distribution. With r2 = 1 and r1 = 0, it
is a test of exuberance over the entire sample period.

When there are several episodes of explosivity, [16] propose to estimate 8 recursively by
expanding forward the end point of the subsamples, i.e. by fixing r1 = 0 and expanding r2 from
a minimum value r0 towards 1. As we calculate several ADF r2

0 , we keep the supremum of the
ADF r2

0 s, which is known as the SADF:

SADF (r0) = sup
r2∈[r0,1]

ADF r2
0 (9)
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From this, we define H0 : γrw = 0 and H1 : γrw > 0 and compare the SADF with the critical
value on the right tail of the limiting distribution under the null:

SADF (r0) −→d sup
r2∈[r0,1]

r2
0 WdW

[r20 W
2]1/2

By expanding r2 = 1, we perform an explosivity test on parts of the sample.
Carrying out the test on every subperiod is also feasible by changing both values of r2 and

r1. With flexible windows we calculate the Generalized SADF

GSADF (r0) = sup
r2∈[r0,1],r1∈[0,r2−r0]

ADF r2
r1 (10)

and compare the GSADF with the critical value on the right tail of the limiting distribution:

sup
r2∈[r0,1],r1∈[0,r2−r0]

(1/2)rw[W (r2)
2 −W (r1)

2 − rw]−r2
r1 W (r)dr[W (r2)−W (r1)]

r
1/2
w

{
rw

r2
r1W (r)2dr − [r2r1W (r)dr]2

}1/2

Some recent interesting articles using tests of explosivity include [19–21].

3. Results
I use data on daily prices of Inversiones Argos (Inverargos) stock from 2012-06-12 to 2013-07-25.
The OLS estimation of the linear model yt = µ + ρyt−1 + εt seems to indicate that the model
has a good fit as the r − squared is notably high (97%) and the significance level at which we
can reject the null hypotheses of zero mean and zero slope are remarkably small (6,2% and 0.0%
respectively; see table 1).

Inversiones Argos stock. Daily closing prices from 2012-06-12 to 2013-07-25.

Figure 4: Inverargos Stock Price

The results of the Dickey-Fuller test from the specifications i) to iii) in expression 7 are in
table 2. The test suggests that the series of the stock price is non-stationary which implies
that the distribution of the statistic in expression 5 does not follow a t-Student distribution or
normal distribution asymptotically and the critical values used in the OLS estimation in table
1 are different to the true critical values.
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Dependent variable:

yt

yt−1 0.981
(0.010)

t statistic = 93.607
p-value = 0.000

µ 393.705
(210.015)

t statistic = 1.875
p-value = 0.062

Observations 272
R2 0.970
Adjusted R2 0.970
Residual Std. Error 337.765 (df = 270)
F Statistic 8,762.257∗∗∗ (df = 1; 270)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parenthesis.

Table 1: OLS Results

no constant constant constant and time trend
DF statistic 0.77 -1.87 -1.83
p-value 0.86 0.36 0.65

Table 2: Dickey-Fuller Test

I obtain the critical values that are useful for hypothesis testing with unit roots by simulating
2000 times a time-series with ρ = 1, running regressions to estimate γs and calculate the
t − statistic. From the quantiles of the cumulative distribution of the statistic I record the
critical values. The distributions of the t− statistic for three specifications are shown in figure
5. Not only these distributions are not normal but they differ for different specifications of the
linear dynamic model as noted by [9].

A visual inspection of the stock price series provides indications of episodes of explosivity. To
test for explosivity I calculate the ADF and SADF statistic as well as the GSADF of expression
10 by setting r0 = 0.01 + 1.8/

√
T as proposed in [17] and comparing those with the critical

values generated from Monte Carlo simulations approximating a Brownian motion.

Statistic 90% c.v. 95% c.v. 99% c.v.
ADF -1.86 -0.446 -0.0631 0.626
SADF 0.544 1.13 1.45 2.10
GSADF 2.24 1.92 2.16 2.67

Table 3: Tests of Explosive Behavior

The results suggest that there are times during which the series present an exhuberant
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a) b)

c)

Figure 5: Simulated distributions of the usual t − test for autoregressive processes. Panel a)
shows the distribution of the t−statistic for an OLS estimator with H0 : γ = ρ−1 = 0 when the
true process is non-stationary and does not have a constant, i.e. ∆yt = (ρ− 1)yt−1 + ut, ρ = 1.
Panel b) shows the distribution when the true process is ∆yt = δ0 + (ρ − 1)yt−1 + ut. Panel
c) shows the distribution for the process ∆yt = δ0 + δ1t + (ρ − 1)yt−1 + ut. In the the legends
τ(noconstant) refers to the model without constant; τ(constant) refers to the model with a
constant; τ(ctrend) is the model with a constant and a trend.

behavior at the 5% level of significance for the GSADF (see table 3). The standard ADF
test as well as the SADF fail to reject the null. The superior power of the GSADF follows
from the flexible estimation window which makes the GSADF test better for detecting multiple
changes in regime or bubbles that burst in-sample. Testing for the dates at which the bubble
started and finished is feasible using the Backward SADF test. For each sub-period, I calculate
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the test and the critical values. The figure 6 panel c) the shaded areas show the time period of
the explosivity.

a) b)

c)

Figure 6: In Date Stamping with the BSADF Test. Panel a) shows the distribution of the values
of the BSADF statistic; panel b) presents the critical values at the 5% level of significance; and
panel c) shows the dates at which the null hypothesis is rejected.

The dates marked with shaded areas are presented in table 4

Start Peak End
2012-09-21 2012-09-21 2012-09-24
2013-02-05 2013-02-06 2013-02-07

Table 4: Date Stamping

4. Discussion
The time-series structure of data allows the researcher to answer important questions that have
a dynamic context. Many of those questions are related to the future values of a variable of
interest. [22], for example, predict climate phenomena in West Java with rainfall variables and
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humidity. Also, from time-series data sets, the academic literature has studied the existence
of cognitive biases, the effects of lending on agricultural investments and the magnitude of
searching costs in financial markets, among others. Specifically in macroeconomics, time-series
modeling has been helpful to test the permanent income hypothesis [23, 24], the hypothesis of
precautionary savings [25], the persistence of aggregate income in the short term [26], the Deaton
(1987) paradox on consumption volatility [27], bubble transmission and formation in the housing
market [21] and the predictability of inflation and economic activity from principal component
analyses [28].

Pivotal to the methodologies that allow to identify dynamic structures is the functional
limit theorem which provides the researcher with the appropriate critical values when the usual
t− Student or normal distributions are not suitable for hypothesis testing.

5. Conclusions
In this paper I provide a comprehensive exploration of the use of limiting distributions in
empirical scientific research, particularly focusing on the role of the t statistic in hypothesis
testing within linear models. Through an examination of various applications spanning
fields such as food science, medical research, and economics, the paper elucidates the
practical significance of statistical principles like the Law of Large Numbers and the Central
Limit Theorem, alongside the Neyman-Pearson principle, in facilitating clear decision-making
processes in hypothesis testing.

Moreover, the paper emphasizes the necessity of analyzing the dynamic dependence structure
of data, particularly in time-series contexts, before relying solely on the t statistic for hypothesis
testing. It underscores the importance of considering the temporal dimension when conducting
empirical analyses, especially in fields where sequential interpretation of data is paramount.
Furthermore, the discussion on testing for Unit Roots and Explosive Behavior in time-series
data highlights the diverse array of statistical tools available to researchers for exploring dynamic
structures within their datasets. By presenting examples from various domains, ranging from
climate prediction to macroeconomics, the paper underscores the broad applicability of these
statistical techniques in addressing a multitude of research questions.

In essence, this paper contributes to the methodological toolkit of researchers by delineating
the necessary conditions for proper hypothesis testing within linear models and elucidating
asymptotic tools specific to information with time-series properties. It stresses the importance
of considering dynamic structures in empirical analyses and provides valuable insights into
statistical methodologies that go beyond traditional approaches based on normal or t
distributions, thereby enriching the empirical scientific research landscape.
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